![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabss | GIF version |
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabss | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4067 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} | |
2 | df-br 4006 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
3 | eleq1 2240 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) | |
4 | 3 | biimpar 297 | . . . . 5 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝑧 ∈ 𝑅) |
5 | 2, 4 | sylan2b 287 | . . . 4 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
6 | 5 | exlimivv 1896 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
7 | 6 | abssi 3232 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} ⊆ 𝑅 |
8 | 1, 7 | eqsstri 3189 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ⊆ wss 3131 ⟨cop 3597 class class class wbr 4005 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-in 3137 df-ss 3144 df-br 4006 df-opab 4067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |