ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabss GIF version

Theorem opabss 4000
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
Distinct variable groups:   𝑥,𝑅   𝑦,𝑅

Proof of Theorem opabss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 3998 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)}
2 df-br 3938 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
3 eleq1 2203 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
43biimpar 295 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝑧𝑅)
52, 4sylan2b 285 . . . 4 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧𝑅)
65exlimivv 1869 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧𝑅)
76abssi 3177 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} ⊆ 𝑅
81, 7eqsstri 3134 1 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1332  wex 1469  wcel 1481  {cab 2126  wss 3076  cop 3535   class class class wbr 3937  {copab 3996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-in 3082  df-ss 3089  df-br 3938  df-opab 3998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator