![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 1, 2, 3 | opabbid 4094 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 {copab 4089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-opab 4091 |
This theorem is referenced by: opabbii 4096 csbopabg 4107 xpeq1 4673 xpeq2 4674 opabbi2dv 4811 csbcnvg 4846 resopab2 4989 mptcnv 5068 cores 5169 xpcom 5212 dffn5im 5602 f1oiso2 5870 f1ocnvd 6120 ofreq 6134 f1od2 6288 shftfvalg 10962 shftfval 10965 2shfti 10975 prdsex 12880 releqgg 13290 eqgex 13291 eqgfval 13292 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrpropdg 13643 aprval 13778 aprap 13782 lmfval 14360 |
Copyright terms: Public domain | W3C validator |