ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbidv GIF version

Theorem opabbidv 4114
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
opabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbidv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opabbidv
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜑
2 nfv 1552 . 2 𝑦𝜑
3 opabbidv.1 . 2 (𝜑 → (𝜓𝜒))
41, 2, 3opabbid 4113 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  {copab 4108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-opab 4110
This theorem is referenced by:  opabbii  4115  csbopabg  4126  xpeq1  4693  xpeq2  4694  opabbi2dv  4831  csbcnvg  4866  resopab2  5011  mptcnv  5090  cores  5191  xpcom  5234  dffn5im  5631  f1oiso2  5903  f1ocnvd  6155  ofreq  6169  f1od2  6328  shftfvalg  11173  shftfval  11176  2shfti  11186  prdsex  13145  prdsval  13149  releqgg  13600  eqgex  13601  eqgfval  13602  reldvdsrsrg  13898  dvdsrvald  13899  dvdsrpropdg  13953  aprval  14088  aprap  14092  lmfval  14708  lgsquadlem3  15600
  Copyright terms: Public domain W3C validator