| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1554 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1554 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | opabbid 4128 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 {copab 4123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-opab 4125 |
| This theorem is referenced by: opabbii 4130 csbopabg 4141 xpeq1 4710 xpeq2 4711 opabbi2dv 4848 csbcnvg 4883 resopab2 5028 mptcnv 5107 cores 5208 xpcom 5251 dffn5im 5652 f1oiso2 5924 f1ocnvd 6178 ofreq 6192 f1od2 6351 shftfvalg 11295 shftfval 11298 2shfti 11308 prdsex 13268 prdsval 13272 releqgg 13723 eqgex 13724 eqgfval 13725 reldvdsrsrg 14021 dvdsrvald 14022 dvdsrpropdg 14076 aprval 14211 aprap 14215 lmfval 14831 lgsquadlem3 15723 |
| Copyright terms: Public domain | W3C validator |