| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | opabbid 4113 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 {copab 4108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-opab 4110 |
| This theorem is referenced by: opabbii 4115 csbopabg 4126 xpeq1 4693 xpeq2 4694 opabbi2dv 4831 csbcnvg 4866 resopab2 5011 mptcnv 5090 cores 5191 xpcom 5234 dffn5im 5631 f1oiso2 5903 f1ocnvd 6155 ofreq 6169 f1od2 6328 shftfvalg 11173 shftfval 11176 2shfti 11186 prdsex 13145 prdsval 13149 releqgg 13600 eqgex 13601 eqgfval 13602 reldvdsrsrg 13898 dvdsrvald 13899 dvdsrpropdg 13953 aprval 14088 aprap 14092 lmfval 14708 lgsquadlem3 15600 |
| Copyright terms: Public domain | W3C validator |