| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | opabbid 4149 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 {copab 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-opab 4146 |
| This theorem is referenced by: opabbii 4151 csbopabg 4162 xpeq1 4733 xpeq2 4734 opabbi2dv 4871 csbcnvg 4906 resopab2 5052 mptcnv 5131 cores 5232 xpcom 5275 dffn5im 5681 f1oiso2 5957 f1ocnvd 6214 ofreq 6228 f1od2 6387 shftfvalg 11337 shftfval 11340 2shfti 11350 prdsex 13310 prdsval 13314 releqgg 13765 eqgex 13766 eqgfval 13767 dvdsrvald 14065 dvdsrpropdg 14119 aprval 14254 aprap 14258 lmfval 14875 lgsquadlem3 15766 wksfval 16043 trlsfvalg 16102 |
| Copyright terms: Public domain | W3C validator |