ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbidv GIF version

Theorem opabbidv 4150
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
opabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbidv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opabbidv
StepHypRef Expression
1 nfv 1574 . 2 𝑥𝜑
2 nfv 1574 . 2 𝑦𝜑
3 opabbidv.1 . 2 (𝜑 → (𝜓𝜒))
41, 2, 3opabbid 4149 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-opab 4146
This theorem is referenced by:  opabbii  4151  csbopabg  4162  xpeq1  4733  xpeq2  4734  opabbi2dv  4871  csbcnvg  4906  resopab2  5052  mptcnv  5131  cores  5232  xpcom  5275  dffn5im  5681  f1oiso2  5957  f1ocnvd  6214  ofreq  6228  f1od2  6387  shftfvalg  11337  shftfval  11340  2shfti  11350  prdsex  13310  prdsval  13314  releqgg  13765  eqgex  13766  eqgfval  13767  dvdsrvald  14065  dvdsrpropdg  14119  aprval  14254  aprap  14258  lmfval  14875  lgsquadlem3  15766  wksfval  16043  trlsfvalg  16102
  Copyright terms: Public domain W3C validator