![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 1, 2, 3 | opabbid 4095 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 {copab 4090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-opab 4092 |
This theorem is referenced by: opabbii 4097 csbopabg 4108 xpeq1 4674 xpeq2 4675 opabbi2dv 4812 csbcnvg 4847 resopab2 4990 mptcnv 5069 cores 5170 xpcom 5213 dffn5im 5603 f1oiso2 5871 f1ocnvd 6122 ofreq 6136 f1od2 6290 shftfvalg 10965 shftfval 10968 2shfti 10978 prdsex 12883 releqgg 13293 eqgex 13294 eqgfval 13295 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrpropdg 13646 aprval 13781 aprap 13785 lmfval 14371 lgsquadlem3 15236 |
Copyright terms: Public domain | W3C validator |