ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbidv GIF version

Theorem opabbidv 4096
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
opabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbidv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opabbidv
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜑
2 nfv 1539 . 2 𝑦𝜑
3 opabbidv.1 . 2 (𝜑 → (𝜓𝜒))
41, 2, 3opabbid 4095 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  {copab 4090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-opab 4092
This theorem is referenced by:  opabbii  4097  csbopabg  4108  xpeq1  4674  xpeq2  4675  opabbi2dv  4812  csbcnvg  4847  resopab2  4990  mptcnv  5069  cores  5170  xpcom  5213  dffn5im  5603  f1oiso2  5871  f1ocnvd  6122  ofreq  6136  f1od2  6290  shftfvalg  10965  shftfval  10968  2shfti  10978  prdsex  12883  releqgg  13293  eqgex  13294  eqgfval  13295  reldvdsrsrg  13591  dvdsrvald  13592  dvdsrpropdg  13646  aprval  13781  aprap  13785  lmfval  14371  lgsquadlem3  15236
  Copyright terms: Public domain W3C validator