Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 1, 2, 3 | opabbid 4047 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 {copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-opab 4044 |
This theorem is referenced by: opabbii 4049 csbopabg 4060 xpeq1 4618 xpeq2 4619 opabbi2dv 4753 csbcnvg 4788 resopab2 4931 mptcnv 5006 cores 5107 xpcom 5150 dffn5im 5532 f1oiso2 5795 f1ocnvd 6040 ofreq 6053 f1od2 6203 shftfvalg 10760 shftfval 10763 2shfti 10773 lmfval 12832 |
Copyright terms: Public domain | W3C validator |