| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | opabbid 4099 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 {copab 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-opab 4096 |
| This theorem is referenced by: opabbii 4101 csbopabg 4112 xpeq1 4678 xpeq2 4679 opabbi2dv 4816 csbcnvg 4851 resopab2 4994 mptcnv 5073 cores 5174 xpcom 5217 dffn5im 5609 f1oiso2 5877 f1ocnvd 6129 ofreq 6143 f1od2 6302 shftfvalg 11002 shftfval 11005 2shfti 11015 prdsex 12973 prdsval 12977 releqgg 13428 eqgex 13429 eqgfval 13430 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrpropdg 13781 aprval 13916 aprap 13920 lmfval 14514 lgsquadlem3 15406 |
| Copyright terms: Public domain | W3C validator |