| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opabbidv | GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) | 
| Ref | Expression | 
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | opabbid 4098 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-opab 4095 | 
| This theorem is referenced by: opabbii 4100 csbopabg 4111 xpeq1 4677 xpeq2 4678 opabbi2dv 4815 csbcnvg 4850 resopab2 4993 mptcnv 5072 cores 5173 xpcom 5216 dffn5im 5606 f1oiso2 5874 f1ocnvd 6125 ofreq 6139 f1od2 6293 shftfvalg 10983 shftfval 10986 2shfti 10996 prdsex 12940 releqgg 13350 eqgex 13351 eqgfval 13352 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrpropdg 13703 aprval 13838 aprap 13842 lmfval 14428 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |