| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprc2 | GIF version | ||
| Description: Expansion of an ordered pair when the second member is a proper class. See also opprc 3840. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opprc2 | ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 2 | 1 | con3i 633 | . 2 ⊢ (¬ 𝐵 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | opprc 3840 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∅c0 3460 〈cop 3636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 df-op 3642 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |