| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprc2 | GIF version | ||
| Description: Expansion of an ordered pair when the second member is a proper class. See also opprc 3854. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opprc2 | ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 2 | 1 | con3i 633 | . 2 ⊢ (¬ 𝐵 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | opprc 3854 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∅c0 3468 〈cop 3646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-nul 3469 df-op 3652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |