ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc GIF version

Theorem opprc 3877
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-op 3675 . 2 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
2 3simpa 1018 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32con3i 635 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
43alrimiv 1920 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∀𝑥 ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
5 abeq0 3522 . . 3 ({𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅ ↔ ∀𝑥 ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
64, 5sylibr 134 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
71, 6eqtrid 2274 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002  wal 1393   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  c0 3491  {csn 3666  {cpr 3667  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492  df-op 3675
This theorem is referenced by:  opprc1  3878  opprc2  3879  ovprc  6036
  Copyright terms: Public domain W3C validator