ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erovlem GIF version

Theorem erovlem 6605
Description: Lemma for eroprf 6606. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 𝐽 = (𝐴 / 𝑅)
eropr.2 𝐾 = (𝐵 / 𝑆)
eropr.3 (𝜑𝑇𝑍)
eropr.4 (𝜑𝑅 Er 𝑈)
eropr.5 (𝜑𝑆 Er 𝑉)
eropr.6 (𝜑𝑇 Er 𝑊)
eropr.7 (𝜑𝐴𝑈)
eropr.8 (𝜑𝐵𝑉)
eropr.9 (𝜑𝐶𝑊)
eropr.10 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
eropr.11 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
eropr.12 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
Assertion
Ref Expression
erovlem (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐾,𝑝,𝑞,𝑥,𝑦,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝐾(𝑢,𝑡,𝑠,𝑟)   𝑉(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑍(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem erovlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . . 8 (((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
21reximi 2567 . . . . . . 7 (∃𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
32reximi 2567 . . . . . 6 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
4 eropr.1 . . . . . . . . . 10 𝐽 = (𝐴 / 𝑅)
54eleq2i 2237 . . . . . . . . 9 (𝑥𝐽𝑥 ∈ (𝐴 / 𝑅))
6 vex 2733 . . . . . . . . . 10 𝑥 ∈ V
76elqs 6564 . . . . . . . . 9 (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑝𝐴 𝑥 = [𝑝]𝑅)
85, 7bitri 183 . . . . . . . 8 (𝑥𝐽 ↔ ∃𝑝𝐴 𝑥 = [𝑝]𝑅)
9 eropr.2 . . . . . . . . . 10 𝐾 = (𝐵 / 𝑆)
109eleq2i 2237 . . . . . . . . 9 (𝑦𝐾𝑦 ∈ (𝐵 / 𝑆))
11 vex 2733 . . . . . . . . . 10 𝑦 ∈ V
1211elqs 6564 . . . . . . . . 9 (𝑦 ∈ (𝐵 / 𝑆) ↔ ∃𝑞𝐵 𝑦 = [𝑞]𝑆)
1310, 12bitri 183 . . . . . . . 8 (𝑦𝐾 ↔ ∃𝑞𝐵 𝑦 = [𝑞]𝑆)
148, 13anbi12i 457 . . . . . . 7 ((𝑥𝐽𝑦𝐾) ↔ (∃𝑝𝐴 𝑥 = [𝑝]𝑅 ∧ ∃𝑞𝐵 𝑦 = [𝑞]𝑆))
15 reeanv 2639 . . . . . . 7 (∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ↔ (∃𝑝𝐴 𝑥 = [𝑝]𝑅 ∧ ∃𝑞𝐵 𝑦 = [𝑞]𝑆))
1614, 15bitr4i 186 . . . . . 6 ((𝑥𝐽𝑦𝐾) ↔ ∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
173, 16sylibr 133 . . . . 5 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (𝑥𝐽𝑦𝐾))
1817pm4.71ri 390 . . . 4 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((𝑥𝐽𝑦𝐾) ∧ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
19 eropr.3 . . . . . . . 8 (𝜑𝑇𝑍)
20 eropr.4 . . . . . . . 8 (𝜑𝑅 Er 𝑈)
21 eropr.5 . . . . . . . 8 (𝜑𝑆 Er 𝑉)
22 eropr.6 . . . . . . . 8 (𝜑𝑇 Er 𝑊)
23 eropr.7 . . . . . . . 8 (𝜑𝐴𝑈)
24 eropr.8 . . . . . . . 8 (𝜑𝐵𝑉)
25 eropr.9 . . . . . . . 8 (𝜑𝐶𝑊)
26 eropr.10 . . . . . . . 8 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
27 eropr.11 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
284, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27eroveu 6604 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
29 iota1 5174 . . . . . . 7 (∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
3028, 29syl 14 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
31 eqcom 2172 . . . . . 6 ((℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3230, 31bitrdi 195 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3332pm5.32da 449 . . . 4 (𝜑 → (((𝑥𝐽𝑦𝐾) ∧ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3418, 33syl5bb 191 . . 3 (𝜑 → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3534oprabbidv 5907 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))})
36 eropr.12 . 2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
37 df-mpo 5858 . . 3 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
38 nfv 1521 . . . 4 𝑤((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
39 nfv 1521 . . . . 5 𝑧(𝑥𝐽𝑦𝐾)
40 nfiota1 5162 . . . . . 6 𝑧(℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4140nfeq2 2324 . . . . 5 𝑧 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4239, 41nfan 1558 . . . 4 𝑧((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
43 eqeq1 2177 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
4443anbi2d 461 . . . 4 (𝑧 = 𝑤 → (((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
4538, 42, 44cbvoprab3 5929 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4637, 45eqtr4i 2194 . 2 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4735, 36, 463eqtr4g 2228 1 (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  ∃!weu 2019  wcel 2141  wrex 2449  wss 3121   class class class wbr 3989   × cxp 4609  cio 5158  wf 5194  (class class class)co 5853  {coprab 5854  cmpo 5855   Er wer 6510  [cec 6511   / cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-er 6513  df-ec 6515  df-qs 6519
This theorem is referenced by:  eroprf  6606
  Copyright terms: Public domain W3C validator