Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabbii | GIF version |
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
oprabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
oprabbii | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 ⊢ 𝑤 = 𝑤 | |
2 | oprabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑤 = 𝑤 → (𝜑 ↔ 𝜓)) |
4 | 3 | oprabbidv 5907 | . 2 ⊢ (𝑤 = 𝑤 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 {coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-oprab 5857 |
This theorem is referenced by: oprab4 5924 mpov 5943 dfxp3 6173 tposmpo 6260 oviec 6619 dfplpq2 7316 dfmpq2 7317 dfmq0qs 7391 dfplq0qs 7392 addsrpr 7707 mulsrpr 7708 addcnsr 7796 mulcnsr 7797 addvalex 7806 |
Copyright terms: Public domain | W3C validator |