ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii GIF version

Theorem oprabbii 5778
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1 (𝜑𝜓)
Assertion
Ref Expression
oprabbii {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem oprabbii
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2113 . 2 𝑤 = 𝑤
2 oprabbii.1 . . . 4 (𝜑𝜓)
32a1i 9 . . 3 (𝑤 = 𝑤 → (𝜑𝜓))
43oprabbidv 5777 . 2 (𝑤 = 𝑤 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
51, 4ax-mp 7 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1312  {coprab 5727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-11 1465  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-oprab 5730
This theorem is referenced by:  oprab4  5794  mpov  5813  dfxp3  6044  tposmpo  6130  oviec  6487  dfplpq2  7104  dfmpq2  7105  dfmq0qs  7179  dfplq0qs  7180  addsrpr  7482  mulsrpr  7483  addcnsr  7563  mulcnsr  7564  addvalex  7573
  Copyright terms: Public domain W3C validator