| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabbii | GIF version | ||
| Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| oprabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| oprabbii | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝑤 = 𝑤 | |
| 2 | oprabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑤 = 𝑤 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | oprabbidv 5976 | . 2 ⊢ (𝑤 = 𝑤 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 {coprab 5923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-oprab 5926 |
| This theorem is referenced by: oprab4 5993 mpov 6012 dfxp3 6252 tposmpo 6339 oviec 6700 dfplpq2 7421 dfmpq2 7422 dfmq0qs 7496 dfplq0qs 7497 addsrpr 7812 mulsrpr 7813 addcnsr 7901 mulcnsr 7902 addvalex 7911 |
| Copyright terms: Public domain | W3C validator |