ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab2 GIF version

Theorem resoprab2 5930
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
resoprab2 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem resoprab2
StepHypRef Expression
1 resoprab 5929 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
2 anass 399 . . . 4 ((((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝜑) ↔ ((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
3 an4 576 . . . . . 6 (((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ↔ ((𝑥𝐶𝑥𝐴) ∧ (𝑦𝐷𝑦𝐵)))
4 ssel 3131 . . . . . . . . 9 (𝐶𝐴 → (𝑥𝐶𝑥𝐴))
54pm4.71d 391 . . . . . . . 8 (𝐶𝐴 → (𝑥𝐶 ↔ (𝑥𝐶𝑥𝐴)))
65bicomd 140 . . . . . . 7 (𝐶𝐴 → ((𝑥𝐶𝑥𝐴) ↔ 𝑥𝐶))
7 ssel 3131 . . . . . . . . 9 (𝐷𝐵 → (𝑦𝐷𝑦𝐵))
87pm4.71d 391 . . . . . . . 8 (𝐷𝐵 → (𝑦𝐷 ↔ (𝑦𝐷𝑦𝐵)))
98bicomd 140 . . . . . . 7 (𝐷𝐵 → ((𝑦𝐷𝑦𝐵) ↔ 𝑦𝐷))
106, 9bi2anan9 596 . . . . . 6 ((𝐶𝐴𝐷𝐵) → (((𝑥𝐶𝑥𝐴) ∧ (𝑦𝐷𝑦𝐵)) ↔ (𝑥𝐶𝑦𝐷)))
113, 10syl5bb 191 . . . . 5 ((𝐶𝐴𝐷𝐵) → (((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐶𝑦𝐷)))
1211anbi1d 461 . . . 4 ((𝐶𝐴𝐷𝐵) → ((((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝜑) ↔ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)))
132, 12bitr3id 193 . . 3 ((𝐶𝐴𝐷𝐵) → (((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)) ↔ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)))
1413oprabbidv 5887 . 2 ((𝐶𝐴𝐷𝐵) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
151, 14syl5eq 2209 1 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  wss 3111   × cxp 4596  cres 4600  {coprab 5837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-opab 4038  df-xp 4604  df-rel 4605  df-res 4610  df-oprab 5840
This theorem is referenced by:  resmpo  5931
  Copyright terms: Public domain W3C validator