ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab2 GIF version

Theorem resoprab2 6055
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
resoprab2 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem resoprab2
StepHypRef Expression
1 resoprab 6054 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))}
2 anass 401 . . . 4 ((((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝜑) ↔ ((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)))
3 an4 586 . . . . . 6 (((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ↔ ((𝑥𝐶𝑥𝐴) ∧ (𝑦𝐷𝑦𝐵)))
4 ssel 3191 . . . . . . . . 9 (𝐶𝐴 → (𝑥𝐶𝑥𝐴))
54pm4.71d 393 . . . . . . . 8 (𝐶𝐴 → (𝑥𝐶 ↔ (𝑥𝐶𝑥𝐴)))
65bicomd 141 . . . . . . 7 (𝐶𝐴 → ((𝑥𝐶𝑥𝐴) ↔ 𝑥𝐶))
7 ssel 3191 . . . . . . . . 9 (𝐷𝐵 → (𝑦𝐷𝑦𝐵))
87pm4.71d 393 . . . . . . . 8 (𝐷𝐵 → (𝑦𝐷 ↔ (𝑦𝐷𝑦𝐵)))
98bicomd 141 . . . . . . 7 (𝐷𝐵 → ((𝑦𝐷𝑦𝐵) ↔ 𝑦𝐷))
106, 9bi2anan9 606 . . . . . 6 ((𝐶𝐴𝐷𝐵) → (((𝑥𝐶𝑥𝐴) ∧ (𝑦𝐷𝑦𝐵)) ↔ (𝑥𝐶𝑦𝐷)))
113, 10bitrid 192 . . . . 5 ((𝐶𝐴𝐷𝐵) → (((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐶𝑦𝐷)))
1211anbi1d 465 . . . 4 ((𝐶𝐴𝐷𝐵) → ((((𝑥𝐶𝑦𝐷) ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝜑) ↔ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)))
132, 12bitr3id 194 . . 3 ((𝐶𝐴𝐷𝐵) → (((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)) ↔ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)))
1413oprabbidv 6012 . 2 ((𝐶𝐴𝐷𝐵) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝜑))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
151, 14eqtrid 2251 1 ((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wss 3170   × cxp 4681  cres 4685  {coprab 5958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4114  df-xp 4689  df-rel 4690  df-res 4695  df-oprab 5961
This theorem is referenced by:  resmpo  6056
  Copyright terms: Public domain W3C validator