| Step | Hyp | Ref
| Expression |
| 1 | | ssel 3177 |
. . . 4
⊢ (𝑅 ⊆ 𝑆 → (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆)) |
| 2 | 1 | a1d 22 |
. . 3
⊢ (𝑅 ⊆ 𝑆 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆))) |
| 3 | 2 | ralrimivv 2578 |
. 2
⊢ (𝑅 ⊆ 𝑆 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆)) |
| 4 | | eleq1 2259 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
| 5 | | eleq1 2259 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑆 ↔ 〈𝑥, 𝑦〉 ∈ 𝑆)) |
| 6 | 4, 5 | imbi12d 234 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆) ↔ (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆))) |
| 7 | 6 | biimprcd 160 |
. . . . . . . . . 10
⊢
((〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 8 | 7 | ralimi 2560 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → ∀𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 9 | 8 | ralimi 2560 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 10 | | r19.23v 2606 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 11 | 10 | ralbii 2503 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ ∀𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 12 | | r19.23v 2606 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 14 | 9, 13 | sylib 122 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 15 | 14 | com23 78 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → (𝑧 ∈ 𝑅 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝑆))) |
| 16 | 15 | a2d 26 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → ((𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 17 | 16 | alimdv 1893 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → (∀𝑧(𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) → ∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
| 18 | | dfss2 3172 |
. . . . 5
⊢ (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ (𝐴 × 𝐵))) |
| 19 | | elxp2 4681 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) |
| 20 | 19 | imbi2i 226 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑅 → 𝑧 ∈ (𝐴 × 𝐵)) ↔ (𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉)) |
| 21 | 20 | albii 1484 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ (𝐴 × 𝐵)) ↔ ∀𝑧(𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉)) |
| 22 | 18, 21 | bitri 184 |
. . . 4
⊢ (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉)) |
| 23 | | dfss2 3172 |
. . . 4
⊢ (𝑅 ⊆ 𝑆 ↔ ∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) |
| 24 | 17, 22, 23 | 3imtr4g 205 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → (𝑅 ⊆ (𝐴 × 𝐵) → 𝑅 ⊆ 𝑆)) |
| 25 | 24 | com12 30 |
. 2
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆) → 𝑅 ⊆ 𝑆)) |
| 26 | 3, 25 | impbid2 143 |
1
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆))) |