ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel2 GIF version

Theorem ssrel2 4701
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4699 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem ssrel2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3141 . . . 4 (𝑅𝑆 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
21a1d 22 . . 3 (𝑅𝑆 → ((𝑥𝐴𝑦𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
32ralrimivv 2551 . 2 (𝑅𝑆 → ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
4 eleq1 2233 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
5 eleq1 2233 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
64, 5imbi12d 233 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝑅𝑧𝑆) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
76biimprcd 159 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
87ralimi 2533 . . . . . . . . 9 (∀𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ∀𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
98ralimi 2533 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
10 r19.23v 2579 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1110ralbii 2476 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ ∀𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
12 r19.23v 2579 . . . . . . . . 9 (∀𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1311, 12bitri 183 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
149, 13sylib 121 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1514com23 78 . . . . . 6 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧𝑅 → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑆)))
1615a2d 26 . . . . 5 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ((𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝑅𝑧𝑆)))
1716alimdv 1872 . . . 4 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝑅𝑧𝑆)))
18 dfss2 3136 . . . . 5 (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)))
19 elxp2 4629 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩)
2019imbi2i 225 . . . . . 6 ((𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)) ↔ (𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
2120albii 1463 . . . . 5 (∀𝑧(𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)) ↔ ∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
2218, 21bitri 183 . . . 4 (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
23 dfss2 3136 . . . 4 (𝑅𝑆 ↔ ∀𝑧(𝑧𝑅𝑧𝑆))
2417, 22, 233imtr4g 204 . . 3 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑅 ⊆ (𝐴 × 𝐵) → 𝑅𝑆))
2524com12 30 . 2 (𝑅 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → 𝑅𝑆))
263, 25impbid2 142 1 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  cop 3586   × cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator