ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 GIF version

Theorem funimass4 5537
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem funimass4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3131 . 2 ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
2 vex 2729 . . . . . . . . 9 𝑦 ∈ V
32elima 4951 . . . . . . . 8 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑥𝐹𝑦)
4 eqcom 2167 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
5 ssel 3136 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
6 funbrfvb 5529 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
76ex 114 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
85, 7syl9 72 . . . . . . . . . . 11 (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
98imp31 254 . . . . . . . . . 10 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
104, 9syl5bb 191 . . . . . . . . 9 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1110rexbidva 2463 . . . . . . . 8 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
123, 11bitr4id 198 . . . . . . 7 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
1312imbi1d 230 . . . . . 6 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵)))
14 r19.23v 2575 . . . . . 6 (∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
1513, 14bitr4di 197 . . . . 5 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1615albidv 1812 . . . 4 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1716ancoms 266 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
18 ralcom4 2748 . . . 4 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵))
19 ssel2 3137 . . . . . . . . 9 ((𝐴 ⊆ dom 𝐹𝑥𝐴) → 𝑥 ∈ dom 𝐹)
2019anim2i 340 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹𝑥𝐴)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
21203impb 1189 . . . . . . 7 ((Fun 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (Fun 𝐹𝑥 ∈ dom 𝐹))
22 funfvex 5503 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
23 nfv 1516 . . . . . . . 8 𝑦(𝐹𝑥) ∈ 𝐵
24 eleq1 2229 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑦𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2523, 24ceqsalg 2754 . . . . . . 7 ((𝐹𝑥) ∈ V → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
2621, 22, 253syl 17 . . . . . 6 ((Fun 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
27263expa 1193 . . . . 5 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
2827ralbidva 2462 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2918, 28bitr3id 193 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
3017, 29bitrd 187 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
311, 30syl5bb 191 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wal 1341   = wceq 1343  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  wss 3116   class class class wbr 3982  dom cdm 4604  cima 4607  Fun wfun 5182  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  funimass3  5601  funimass5  5602  funconstss  5603  funimassov  5991  phimullem  12157  txcnp  12911  metcnp  13152
  Copyright terms: Public domain W3C validator