ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 GIF version

Theorem funimass4 5636
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem funimass4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssalel 3182 . 2 ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
2 vex 2776 . . . . . . . . 9 𝑦 ∈ V
32elima 5032 . . . . . . . 8 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑥𝐹𝑦)
4 eqcom 2208 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
5 ssel 3188 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
6 funbrfvb 5628 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
76ex 115 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
85, 7syl9 72 . . . . . . . . . . 11 (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
98imp31 256 . . . . . . . . . 10 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
104, 9bitrid 192 . . . . . . . . 9 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1110rexbidva 2504 . . . . . . . 8 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
123, 11bitr4id 199 . . . . . . 7 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
1312imbi1d 231 . . . . . 6 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵)))
14 r19.23v 2616 . . . . . 6 (∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
1513, 14bitr4di 198 . . . . 5 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1615albidv 1848 . . . 4 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1716ancoms 268 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
18 ralcom4 2795 . . . 4 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵))
19 ssel2 3189 . . . . . . . . 9 ((𝐴 ⊆ dom 𝐹𝑥𝐴) → 𝑥 ∈ dom 𝐹)
2019anim2i 342 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹𝑥𝐴)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
21203impb 1202 . . . . . . 7 ((Fun 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (Fun 𝐹𝑥 ∈ dom 𝐹))
22 funfvex 5600 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
23 nfv 1552 . . . . . . . 8 𝑦(𝐹𝑥) ∈ 𝐵
24 eleq1 2269 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑦𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2523, 24ceqsalg 2801 . . . . . . 7 ((𝐹𝑥) ∈ V → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
2621, 22, 253syl 17 . . . . . 6 ((Fun 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
27263expa 1206 . . . . 5 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
2827ralbidva 2503 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2918, 28bitr3id 194 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
3017, 29bitrd 188 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
311, 30bitrid 192 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  wss 3167   class class class wbr 4047  dom cdm 4679  cima 4682  Fun wfun 5270  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284
This theorem is referenced by:  funimass3  5703  funimass5  5704  funconstss  5705  funimassov  6103  phimullem  12591  txcnp  14787  metcnp  15028  plycoeid3  15273
  Copyright terms: Public domain W3C validator