ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 GIF version

Theorem funimass4 5611
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem funimass4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3172 . 2 ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
2 vex 2766 . . . . . . . . 9 𝑦 ∈ V
32elima 5014 . . . . . . . 8 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑥𝐹𝑦)
4 eqcom 2198 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
5 ssel 3177 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
6 funbrfvb 5603 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
76ex 115 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
85, 7syl9 72 . . . . . . . . . . 11 (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
98imp31 256 . . . . . . . . . 10 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
104, 9bitrid 192 . . . . . . . . 9 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1110rexbidva 2494 . . . . . . . 8 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
123, 11bitr4id 199 . . . . . . 7 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
1312imbi1d 231 . . . . . 6 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵)))
14 r19.23v 2606 . . . . . 6 (∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
1513, 14bitr4di 198 . . . . 5 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1615albidv 1838 . . . 4 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1716ancoms 268 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
18 ralcom4 2785 . . . 4 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵))
19 ssel2 3178 . . . . . . . . 9 ((𝐴 ⊆ dom 𝐹𝑥𝐴) → 𝑥 ∈ dom 𝐹)
2019anim2i 342 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐴 ⊆ dom 𝐹𝑥𝐴)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
21203impb 1201 . . . . . . 7 ((Fun 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (Fun 𝐹𝑥 ∈ dom 𝐹))
22 funfvex 5575 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
23 nfv 1542 . . . . . . . 8 𝑦(𝐹𝑥) ∈ 𝐵
24 eleq1 2259 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑦𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2523, 24ceqsalg 2791 . . . . . . 7 ((𝐹𝑥) ∈ V → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
2621, 22, 253syl 17 . . . . . 6 ((Fun 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
27263expa 1205 . . . . 5 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵))
2827ralbidva 2493 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2918, 28bitr3id 194 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
3017, 29bitrd 188 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
311, 30bitrid 192 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  wss 3157   class class class wbr 4033  dom cdm 4663  cima 4666  Fun wfun 5252  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  funimass3  5678  funimass5  5679  funconstss  5680  funimassov  6073  phimullem  12393  txcnp  14507  metcnp  14748  plycoeid3  14993
  Copyright terms: Public domain W3C validator