ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem1 GIF version

Theorem exmidontriimlem1 7220
Description: Lemma for exmidontriim 7224. A variation of r19.30dc 2624. (Contributed by Jim Kingdon, 12-Aug-2024.)
Assertion
Ref Expression
exmidontriimlem1 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))

Proof of Theorem exmidontriimlem1
StepHypRef Expression
1 3orass 981 . . . . . . . 8 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
21biimpi 120 . . . . . . 7 ((𝜑𝜓𝜒) → (𝜑 ∨ (𝜓𝜒)))
32orcomd 729 . . . . . 6 ((𝜑𝜓𝜒) → ((𝜓𝜒) ∨ 𝜑))
43ralimi 2540 . . . . 5 (∀𝑥𝐴 (𝜑𝜓𝜒) → ∀𝑥𝐴 ((𝜓𝜒) ∨ 𝜑))
5 exmidexmid 4197 . . . . 5 (EXMIDDECID𝑥𝐴 𝜑)
6 r19.30dc 2624 . . . . 5 ((∀𝑥𝐴 ((𝜓𝜒) ∨ 𝜑) ∧ DECID𝑥𝐴 𝜑) → (∀𝑥𝐴 (𝜓𝜒) ∨ ∃𝑥𝐴 𝜑))
74, 5, 6syl2an 289 . . . 4 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∀𝑥𝐴 (𝜓𝜒) ∨ ∃𝑥𝐴 𝜑))
87orcomd 729 . . 3 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 (𝜓𝜒)))
9 simpr 110 . . . . . 6 (((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) ∧ ∀𝑥𝐴 (𝜓𝜒)) → ∀𝑥𝐴 (𝜓𝜒))
10 simplr 528 . . . . . 6 (((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) ∧ ∀𝑥𝐴 (𝜓𝜒)) → EXMID)
11 orcom 728 . . . . . . . . . 10 ((𝜓𝜒) ↔ (𝜒𝜓))
1211ralbii 2483 . . . . . . . . 9 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥𝐴 (𝜒𝜓))
1312biimpi 120 . . . . . . . 8 (∀𝑥𝐴 (𝜓𝜒) → ∀𝑥𝐴 (𝜒𝜓))
14 exmidexmid 4197 . . . . . . . 8 (EXMIDDECID𝑥𝐴 𝜓)
15 r19.30dc 2624 . . . . . . . 8 ((∀𝑥𝐴 (𝜒𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜒 ∨ ∃𝑥𝐴 𝜓))
1613, 14, 15syl2an 289 . . . . . . 7 ((∀𝑥𝐴 (𝜓𝜒) ∧ EXMID) → (∀𝑥𝐴 𝜒 ∨ ∃𝑥𝐴 𝜓))
1716orcomd 729 . . . . . 6 ((∀𝑥𝐴 (𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
189, 10, 17syl2anc 411 . . . . 5 (((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) ∧ ∀𝑥𝐴 (𝜓𝜒)) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
1918ex 115 . . . 4 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∀𝑥𝐴 (𝜓𝜒) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒)))
2019orim2d 788 . . 3 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → ((∃𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 (𝜓𝜒)) → (∃𝑥𝐴 𝜑 ∨ (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))))
218, 20mpd 13 . 2 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒)))
22 3orass 981 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒) ↔ (∃𝑥𝐴 𝜑 ∨ (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒)))
2321, 22sylibr 134 1 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  DECID wdc 834  w3o 977  wral 2455  wrex 2456  EXMIDwem 4195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-exmid 4196
This theorem is referenced by:  exmidontriimlem2  7221
  Copyright terms: Public domain W3C validator