ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem1 GIF version

Theorem exmidontriimlem1 7198
Description: Lemma for exmidontriim 7202. A variation of r19.30dc 2617. (Contributed by Jim Kingdon, 12-Aug-2024.)
Assertion
Ref Expression
exmidontriimlem1 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))

Proof of Theorem exmidontriimlem1
StepHypRef Expression
1 3orass 976 . . . . . . . 8 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
21biimpi 119 . . . . . . 7 ((𝜑𝜓𝜒) → (𝜑 ∨ (𝜓𝜒)))
32orcomd 724 . . . . . 6 ((𝜑𝜓𝜒) → ((𝜓𝜒) ∨ 𝜑))
43ralimi 2533 . . . . 5 (∀𝑥𝐴 (𝜑𝜓𝜒) → ∀𝑥𝐴 ((𝜓𝜒) ∨ 𝜑))
5 exmidexmid 4182 . . . . 5 (EXMIDDECID𝑥𝐴 𝜑)
6 r19.30dc 2617 . . . . 5 ((∀𝑥𝐴 ((𝜓𝜒) ∨ 𝜑) ∧ DECID𝑥𝐴 𝜑) → (∀𝑥𝐴 (𝜓𝜒) ∨ ∃𝑥𝐴 𝜑))
74, 5, 6syl2an 287 . . . 4 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∀𝑥𝐴 (𝜓𝜒) ∨ ∃𝑥𝐴 𝜑))
87orcomd 724 . . 3 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 (𝜓𝜒)))
9 simpr 109 . . . . . 6 (((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) ∧ ∀𝑥𝐴 (𝜓𝜒)) → ∀𝑥𝐴 (𝜓𝜒))
10 simplr 525 . . . . . 6 (((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) ∧ ∀𝑥𝐴 (𝜓𝜒)) → EXMID)
11 orcom 723 . . . . . . . . . 10 ((𝜓𝜒) ↔ (𝜒𝜓))
1211ralbii 2476 . . . . . . . . 9 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥𝐴 (𝜒𝜓))
1312biimpi 119 . . . . . . . 8 (∀𝑥𝐴 (𝜓𝜒) → ∀𝑥𝐴 (𝜒𝜓))
14 exmidexmid 4182 . . . . . . . 8 (EXMIDDECID𝑥𝐴 𝜓)
15 r19.30dc 2617 . . . . . . . 8 ((∀𝑥𝐴 (𝜒𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜒 ∨ ∃𝑥𝐴 𝜓))
1613, 14, 15syl2an 287 . . . . . . 7 ((∀𝑥𝐴 (𝜓𝜒) ∧ EXMID) → (∀𝑥𝐴 𝜒 ∨ ∃𝑥𝐴 𝜓))
1716orcomd 724 . . . . . 6 ((∀𝑥𝐴 (𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
189, 10, 17syl2anc 409 . . . . 5 (((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) ∧ ∀𝑥𝐴 (𝜓𝜒)) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
1918ex 114 . . . 4 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∀𝑥𝐴 (𝜓𝜒) → (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒)))
2019orim2d 783 . . 3 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → ((∃𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 (𝜓𝜒)) → (∃𝑥𝐴 𝜑 ∨ (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))))
218, 20mpd 13 . 2 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒)))
22 3orass 976 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒) ↔ (∃𝑥𝐴 𝜑 ∨ (∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒)))
2321, 22sylibr 133 1 ((∀𝑥𝐴 (𝜑𝜓𝜒) ∧ EXMID) → (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  DECID wdc 829  w3o 972  wral 2448  wrex 2449  EXMIDwem 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-exmid 4181
This theorem is referenced by:  exmidontriimlem2  7199
  Copyright terms: Public domain W3C validator