ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 GIF version

Theorem ral0 3561
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0 𝑥 ∈ ∅ 𝜑

Proof of Theorem ral0
StepHypRef Expression
1 noel 3463 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 647 . 2 (𝑥 ∈ ∅ → 𝜑)
32rgen 2558 1 𝑥 ∈ ∅ 𝜑
Colors of variables: wff set class
Syntax hints:  wcel 2175  wral 2483  c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-dif 3167  df-nul 3460
This theorem is referenced by:  0iin  3985  po0  4356  so0  4371  we0  4406  ord0  4436  omsinds  4668  mpt0  5397  iso0  5876  ixp0x  6803  ac6sfi  6977  fimax2gtri  6980  dcfi  7065  nnnninfeq2  7213  nninfisollem0  7214  finomni  7224  uzsinds  10570  seq3f1olemp  10641  rexfiuz  11219  fimaxre2  11457  2prm  12368  bj-nntrans  15751
  Copyright terms: Public domain W3C validator