| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ral0 | GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 649 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
| 3 | 2 | rgen 2583 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∀wral 2508 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: 0iin 4023 po0 4401 so0 4416 we0 4451 ord0 4481 omsinds 4713 mpt0 5450 iso0 5940 ixp0x 6871 ac6sfi 7056 fimax2gtri 7059 dcfi 7144 nnnninfeq2 7292 nninfisollem0 7293 finomni 7303 uzsinds 10661 seq3f1olemp 10732 swrd0g 11187 swrdspsleq 11194 rexfiuz 11495 fimaxre2 11733 2prm 12644 bj-nntrans 16272 |
| Copyright terms: Public domain | W3C validator |