![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ral0 | GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3451 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
3 | 2 | rgen 2547 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∀wral 2472 ∅c0 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3156 df-nul 3448 |
This theorem is referenced by: 0iin 3972 po0 4343 so0 4358 we0 4393 ord0 4423 omsinds 4655 mpt0 5382 iso0 5861 ixp0x 6782 ac6sfi 6956 fimax2gtri 6959 dcfi 7042 nnnninfeq2 7190 nninfisollem0 7191 finomni 7201 uzsinds 10518 seq3f1olemp 10589 rexfiuz 11136 fimaxre2 11373 2prm 12268 bj-nntrans 15513 |
Copyright terms: Public domain | W3C validator |