Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ral0 | GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 641 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
3 | 2 | rgen 2523 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ∀wral 2448 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: 0iin 3929 po0 4294 so0 4309 we0 4344 ord0 4374 omsinds 4604 mpt0 5323 iso0 5794 ixp0x 6701 ac6sfi 6873 fimax2gtri 6876 dcfi 6955 nnnninfeq2 7102 nninfisollem0 7103 finomni 7113 uzsinds 10387 seq3f1olemp 10447 rexfiuz 10942 fimaxre2 11179 2prm 12070 bj-nntrans 13948 |
Copyright terms: Public domain | W3C validator |