![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ral0 | GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3450 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
3 | 2 | rgen 2547 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∀wral 2472 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3155 df-nul 3447 |
This theorem is referenced by: 0iin 3971 po0 4342 so0 4357 we0 4392 ord0 4422 omsinds 4654 mpt0 5381 iso0 5860 ixp0x 6780 ac6sfi 6954 fimax2gtri 6957 dcfi 7040 nnnninfeq2 7188 nninfisollem0 7189 finomni 7199 uzsinds 10515 seq3f1olemp 10586 rexfiuz 11133 fimaxre2 11370 2prm 12265 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |