Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ral0 | GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 641 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
3 | 2 | rgen 2523 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ∀wral 2448 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: 0iin 3931 po0 4296 so0 4311 we0 4346 ord0 4376 omsinds 4606 mpt0 5325 iso0 5796 ixp0x 6704 ac6sfi 6876 fimax2gtri 6879 dcfi 6958 nnnninfeq2 7105 nninfisollem0 7106 finomni 7116 uzsinds 10398 seq3f1olemp 10458 rexfiuz 10953 fimaxre2 11190 2prm 12081 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |