| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ral0 | GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3463 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
| 3 | 2 | rgen 2558 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∀wral 2483 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-nul 3460 |
| This theorem is referenced by: 0iin 3985 po0 4356 so0 4371 we0 4406 ord0 4436 omsinds 4668 mpt0 5397 iso0 5876 ixp0x 6803 ac6sfi 6977 fimax2gtri 6980 dcfi 7065 nnnninfeq2 7213 nninfisollem0 7214 finomni 7224 uzsinds 10570 seq3f1olemp 10641 rexfiuz 11219 fimaxre2 11457 2prm 12368 bj-nntrans 15751 |
| Copyright terms: Public domain | W3C validator |