Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ral0 | GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 636 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
3 | 2 | rgen 2519 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∀wral 2444 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: 0iin 3924 po0 4289 so0 4304 we0 4339 ord0 4369 omsinds 4599 mpt0 5315 iso0 5785 ixp0x 6692 ac6sfi 6864 fimax2gtri 6867 dcfi 6946 nnnninfeq2 7093 nninfisollem0 7094 finomni 7104 uzsinds 10377 seq3f1olemp 10437 rexfiuz 10931 fimaxre2 11168 2prm 12059 bj-nntrans 13833 |
Copyright terms: Public domain | W3C validator |