ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral0 GIF version

Theorem ral0 3566
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
ral0 𝑥 ∈ ∅ 𝜑

Proof of Theorem ral0
StepHypRef Expression
1 noel 3468 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 647 . 2 (𝑥 ∈ ∅ → 𝜑)
32rgen 2560 1 𝑥 ∈ ∅ 𝜑
Colors of variables: wff set class
Syntax hints:  wcel 2177  wral 2485  c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-nul 3465
This theorem is referenced by:  0iin  3992  po0  4366  so0  4381  we0  4416  ord0  4446  omsinds  4678  mpt0  5413  iso0  5899  ixp0x  6826  ac6sfi  7010  fimax2gtri  7013  dcfi  7098  nnnninfeq2  7246  nninfisollem0  7247  finomni  7257  uzsinds  10611  seq3f1olemp  10682  swrd0g  11136  swrdspsleq  11143  rexfiuz  11375  fimaxre2  11613  2prm  12524  bj-nntrans  16025
  Copyright terms: Public domain W3C validator