| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ral0 | GIF version | ||
| Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3468 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝜑) |
| 3 | 2 | rgen 2560 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∀wral 2485 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3172 df-nul 3465 |
| This theorem is referenced by: 0iin 3992 po0 4366 so0 4381 we0 4416 ord0 4446 omsinds 4678 mpt0 5413 iso0 5899 ixp0x 6826 ac6sfi 7010 fimax2gtri 7013 dcfi 7098 nnnninfeq2 7246 nninfisollem0 7247 finomni 7257 uzsinds 10611 seq3f1olemp 10682 swrd0g 11136 swrdspsleq 11143 rexfiuz 11375 fimaxre2 11613 2prm 12524 bj-nntrans 16025 |
| Copyright terms: Public domain | W3C validator |