ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu3 GIF version

Theorem reu3 2927
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
Assertion
Ref Expression
reu3 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu3
StepHypRef Expression
1 reurex 2690 . . 3 (∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
2 reu6 2926 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
3 biimp 118 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
43ralimi 2540 . . . . 5 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) → ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
54reximi 2574 . . . 4 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
62, 5sylbi 121 . . 3 (∃!𝑥𝐴 𝜑 → ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
71, 6jca 306 . 2 (∃!𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))
8 rexex 2523 . . . 4 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
98anim2i 342 . . 3 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)) → (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦)))
10 nfv 1528 . . . . 5 𝑦(𝑥𝐴𝜑)
1110eu3 2072 . . . 4 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦)))
12 df-reu 2462 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
13 df-rex 2461 . . . . 5 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
14 df-ral 2460 . . . . . . 7 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
15 impexp 263 . . . . . . . 8 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
1615albii 1470 . . . . . . 7 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
1714, 16bitr4i 187 . . . . . 6 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
1817exbii 1605 . . . . 5 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
1913, 18anbi12i 460 . . . 4 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦)))
2011, 12, 193bitr4i 212 . . 3 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦)))
219, 20sylibr 134 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)) → ∃!𝑥𝐴 𝜑)
227, 21impbii 126 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351  wex 1492  ∃!weu 2026  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-cleq 2170  df-clel 2173  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463
This theorem is referenced by:  reu7  2932  bdreu  14577
  Copyright terms: Public domain W3C validator