ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpmu GIF version

Theorem genpmu 7602
Description: The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpmu ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpmu
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7559 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7562 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (2nd𝐴))
3 rexex 2543 . . . 4 (∃𝑓Q 𝑓 ∈ (2nd𝐴) → ∃𝑓 𝑓 ∈ (2nd𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (2nd𝐴))
54adantr 276 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (2nd𝐴))
6 prop 7559 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prmu 7562 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (2nd𝐵))
8 rexex 2543 . . . . 5 (∃𝑔Q 𝑔 ∈ (2nd𝐵) → ∃𝑔 𝑔 ∈ (2nd𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (2nd𝐵))
109ad2antlr 489 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) → ∃𝑔 𝑔 ∈ (2nd𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genppreclu 7599 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵)) → (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵))))
1413imp 124 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵)))
15 elprnqu 7566 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
161, 15sylan 283 . . . . . . . . 9 ((𝐴P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
17 elprnqu 7566 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
186, 17sylan 283 . . . . . . . . 9 ((𝐵P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
1916, 18anim12i 338 . . . . . . . 8 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ (𝐵P𝑔 ∈ (2nd𝐵))) → (𝑓Q𝑔Q))
2019an4s 588 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓Q𝑔Q))
2112caovcl 6082 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 110 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2265 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2872 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → ((𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
2726anassrs 400 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) ∧ 𝑔 ∈ (2nd𝐵)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1913 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1913 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1506  wcel 2167  wrex 2476  {crab 2479  cop 3626  cfv 5259  (class class class)co 5925  cmpo 5927  1st c1st 6205  2nd c2nd 6206  Qcnq 7364  Pcnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-qs 6607  df-ni 7388  df-nqqs 7432  df-inp 7550
This theorem is referenced by:  addclpr  7621  mulclpr  7656
  Copyright terms: Public domain W3C validator