ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpmu GIF version

Theorem genpmu 7651
Description: The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpmu ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpmu
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7608 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7611 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (2nd𝐴))
3 rexex 2553 . . . 4 (∃𝑓Q 𝑓 ∈ (2nd𝐴) → ∃𝑓 𝑓 ∈ (2nd𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (2nd𝐴))
54adantr 276 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (2nd𝐴))
6 prop 7608 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prmu 7611 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (2nd𝐵))
8 rexex 2553 . . . . 5 (∃𝑔Q 𝑔 ∈ (2nd𝐵) → ∃𝑔 𝑔 ∈ (2nd𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (2nd𝐵))
109ad2antlr 489 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) → ∃𝑔 𝑔 ∈ (2nd𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genppreclu 7648 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵)) → (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵))))
1413imp 124 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵)))
15 elprnqu 7615 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
161, 15sylan 283 . . . . . . . . 9 ((𝐴P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
17 elprnqu 7615 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
186, 17sylan 283 . . . . . . . . 9 ((𝐵P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
1916, 18anim12i 338 . . . . . . . 8 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ (𝐵P𝑔 ∈ (2nd𝐵))) → (𝑓Q𝑔Q))
2019an4s 588 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓Q𝑔Q))
2112caovcl 6114 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 110 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2275 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2885 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → ((𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
2726anassrs 400 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) ∧ 𝑔 ∈ (2nd𝐵)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1923 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1923 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2177  wrex 2486  {crab 2489  cop 3641  cfv 5280  (class class class)co 5957  cmpo 5959  1st c1st 6237  2nd c2nd 6238  Qcnq 7413  Pcnp 7424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-qs 6639  df-ni 7437  df-nqqs 7481  df-inp 7599
This theorem is referenced by:  addclpr  7670  mulclpr  7705
  Copyright terms: Public domain W3C validator