ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpml GIF version

Theorem genpml 7507
Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpml ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpml
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7465 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 7467 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (1st𝐴))
3 rexex 2523 . . . 4 (∃𝑓Q 𝑓 ∈ (1st𝐴) → ∃𝑓 𝑓 ∈ (1st𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (1st𝐴))
54adantr 276 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (1st𝐴))
6 prop 7465 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prml 7467 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (1st𝐵))
8 rexex 2523 . . . . 5 (∃𝑔Q 𝑔 ∈ (1st𝐵) → ∃𝑔 𝑔 ∈ (1st𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (1st𝐵))
109ad2antlr 489 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑔 𝑔 ∈ (1st𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genpprecll 7504 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵)) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
1413imp 124 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))
15 elprnql 7471 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
161, 15sylan 283 . . . . . . . . 9 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
17 elprnql 7471 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (1st𝐵)) → 𝑔Q)
186, 17sylan 283 . . . . . . . . 9 ((𝐵P𝑔 ∈ (1st𝐵)) → 𝑔Q)
1916, 18anim12i 338 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2019an4s 588 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2112caovcl 6023 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 110 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2246 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2845 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ((𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2726anassrs 400 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1898 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1898 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {crab 2459  cop 3594  cfv 5212  (class class class)co 5869  cmpo 5871  1st c1st 6133  2nd c2nd 6134  Qcnq 7270  Pcnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-qs 6535  df-ni 7294  df-nqqs 7338  df-inp 7456
This theorem is referenced by:  addclpr  7527  mulclpr  7562
  Copyright terms: Public domain W3C validator