ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpml GIF version

Theorem genpml 7577
Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpml ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpml
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7535 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 7537 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (1st𝐴))
3 rexex 2540 . . . 4 (∃𝑓Q 𝑓 ∈ (1st𝐴) → ∃𝑓 𝑓 ∈ (1st𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (1st𝐴))
54adantr 276 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (1st𝐴))
6 prop 7535 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prml 7537 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (1st𝐵))
8 rexex 2540 . . . . 5 (∃𝑔Q 𝑔 ∈ (1st𝐵) → ∃𝑔 𝑔 ∈ (1st𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (1st𝐵))
109ad2antlr 489 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑔 𝑔 ∈ (1st𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genpprecll 7574 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵)) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
1413imp 124 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))
15 elprnql 7541 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
161, 15sylan 283 . . . . . . . . 9 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
17 elprnql 7541 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (1st𝐵)) → 𝑔Q)
186, 17sylan 283 . . . . . . . . 9 ((𝐵P𝑔 ∈ (1st𝐵)) → 𝑔Q)
1916, 18anim12i 338 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2019an4s 588 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2112caovcl 6073 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 110 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2262 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2868 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ((𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2726anassrs 400 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1910 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1910 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2164  wrex 2473  {crab 2476  cop 3621  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  Qcnq 7340  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526
This theorem is referenced by:  addclpr  7597  mulclpr  7632
  Copyright terms: Public domain W3C validator