ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpml GIF version

Theorem genpml 7516
Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpml ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpml
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7474 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 7476 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (1st𝐴))
3 rexex 2523 . . . 4 (∃𝑓Q 𝑓 ∈ (1st𝐴) → ∃𝑓 𝑓 ∈ (1st𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (1st𝐴))
54adantr 276 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (1st𝐴))
6 prop 7474 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prml 7476 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (1st𝐵))
8 rexex 2523 . . . . 5 (∃𝑔Q 𝑔 ∈ (1st𝐵) → ∃𝑔 𝑔 ∈ (1st𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (1st𝐵))
109ad2antlr 489 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑔 𝑔 ∈ (1st𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genpprecll 7513 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵)) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
1413imp 124 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))
15 elprnql 7480 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
161, 15sylan 283 . . . . . . . . 9 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
17 elprnql 7480 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (1st𝐵)) → 𝑔Q)
186, 17sylan 283 . . . . . . . . 9 ((𝐵P𝑔 ∈ (1st𝐵)) → 𝑔Q)
1916, 18anim12i 338 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2019an4s 588 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2112caovcl 6029 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 110 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2246 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2846 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ((𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2726anassrs 400 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1898 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1898 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {crab 2459  cop 3596  cfv 5217  (class class class)co 5875  cmpo 5877  1st c1st 6139  2nd c2nd 6140  Qcnq 7279  Pcnp 7290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-qs 6541  df-ni 7303  df-nqqs 7347  df-inp 7465
This theorem is referenced by:  addclpr  7536  mulclpr  7571
  Copyright terms: Public domain W3C validator