ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpml GIF version

Theorem genpml 7458
Description: The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpml ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpml
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7416 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 7418 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (1st𝐴))
3 rexex 2512 . . . 4 (∃𝑓Q 𝑓 ∈ (1st𝐴) → ∃𝑓 𝑓 ∈ (1st𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (1st𝐴))
54adantr 274 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (1st𝐴))
6 prop 7416 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prml 7418 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (1st𝐵))
8 rexex 2512 . . . . 5 (∃𝑔Q 𝑔 ∈ (1st𝐵) → ∃𝑔 𝑔 ∈ (1st𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (1st𝐵))
109ad2antlr 481 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑔 𝑔 ∈ (1st𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genpprecll 7455 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵)) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
1413imp 123 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))
15 elprnql 7422 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
161, 15sylan 281 . . . . . . . . 9 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
17 elprnql 7422 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (1st𝐵)) → 𝑔Q)
186, 17sylan 281 . . . . . . . . 9 ((𝐵P𝑔 ∈ (1st𝐵)) → 𝑔Q)
1916, 18anim12i 336 . . . . . . . 8 (((𝐴P𝑓 ∈ (1st𝐴)) ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2019an4s 578 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓Q𝑔Q))
2112caovcl 5996 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 109 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2235 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2834 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ((𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑔 ∈ (1st𝐵))) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2726anassrs 398 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) ∧ 𝑔 ∈ (1st𝐵)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1886 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (1st𝐴)) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1886 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wex 1480  wcel 2136  wrex 2445  {crab 2448  cop 3579  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106  2nd c2nd 6107  Qcnq 7221  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-qs 6507  df-ni 7245  df-nqqs 7289  df-inp 7407
This theorem is referenced by:  addclpr  7478  mulclpr  7513
  Copyright terms: Public domain W3C validator