Step | Hyp | Ref
| Expression |
1 | | prop 7416 |
. . . 4
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
2 | | prml 7418 |
. . . 4
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑓 ∈
Q 𝑓 ∈
(1st ‘𝐴)) |
3 | | rexex 2512 |
. . . 4
⊢
(∃𝑓 ∈
Q 𝑓 ∈
(1st ‘𝐴)
→ ∃𝑓 𝑓 ∈ (1st
‘𝐴)) |
4 | 1, 2, 3 | 3syl 17 |
. . 3
⊢ (𝐴 ∈ P →
∃𝑓 𝑓 ∈ (1st ‘𝐴)) |
5 | 4 | adantr 274 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ∃𝑓 𝑓 ∈ (1st
‘𝐴)) |
6 | | prop 7416 |
. . . . 5
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
7 | | prml 7418 |
. . . . 5
⊢
(〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P →
∃𝑔 ∈
Q 𝑔 ∈
(1st ‘𝐵)) |
8 | | rexex 2512 |
. . . . 5
⊢
(∃𝑔 ∈
Q 𝑔 ∈
(1st ‘𝐵)
→ ∃𝑔 𝑔 ∈ (1st
‘𝐵)) |
9 | 6, 7, 8 | 3syl 17 |
. . . 4
⊢ (𝐵 ∈ P →
∃𝑔 𝑔 ∈ (1st ‘𝐵)) |
10 | 9 | ad2antlr 481 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑓 ∈
(1st ‘𝐴))
→ ∃𝑔 𝑔 ∈ (1st
‘𝐵)) |
11 | | genpelvl.1 |
. . . . . . 7
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣
∃𝑦 ∈
Q ∃𝑧
∈ Q (𝑦
∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q
∃𝑧 ∈
Q (𝑦 ∈
(2nd ‘𝑤)
∧ 𝑧 ∈
(2nd ‘𝑣)
∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
12 | | genpelvl.2 |
. . . . . . 7
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦𝐺𝑧) ∈ Q) |
13 | 11, 12 | genpprecll 7455 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵))
→ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))) |
14 | 13 | imp 123 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
→ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵))) |
15 | | elprnql 7422 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑓 ∈ (1st
‘𝐴)) → 𝑓 ∈
Q) |
16 | 1, 15 | sylan 281 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝑓 ∈ (1st
‘𝐴)) → 𝑓 ∈
Q) |
17 | | elprnql 7422 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑔 ∈ (1st
‘𝐵)) → 𝑔 ∈
Q) |
18 | 6, 17 | sylan 281 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝑔 ∈ (1st
‘𝐵)) → 𝑔 ∈
Q) |
19 | 16, 18 | anim12i 336 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝑓 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝑔 ∈ (1st
‘𝐵))) → (𝑓 ∈ Q ∧
𝑔 ∈
Q)) |
20 | 19 | an4s 578 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
→ (𝑓 ∈
Q ∧ 𝑔
∈ Q)) |
21 | 12 | caovcl 5996 |
. . . . . . 7
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓𝐺𝑔) ∈ Q) |
22 | 20, 21 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
→ (𝑓𝐺𝑔) ∈ Q) |
23 | | simpr 109 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔)) |
24 | 23 | eleq1d 2235 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)))) |
25 | 22, 24 | rspcedv 2834 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
→ ((𝑓𝐺𝑔) ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
26 | 14, 25 | mpd 13 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑔 ∈
(1st ‘𝐵)))
→ ∃𝑞 ∈
Q 𝑞 ∈
(1st ‘(𝐴𝐹𝐵))) |
27 | 26 | anassrs 398 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑓 ∈
(1st ‘𝐴))
∧ 𝑔 ∈
(1st ‘𝐵))
→ ∃𝑞 ∈
Q 𝑞 ∈
(1st ‘(𝐴𝐹𝐵))) |
28 | 10, 27 | exlimddv 1886 |
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑓 ∈
(1st ‘𝐴))
→ ∃𝑞 ∈
Q 𝑞 ∈
(1st ‘(𝐴𝐹𝐵))) |
29 | 5, 28 | exlimddv 1886 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ∃𝑞 ∈
Q 𝑞 ∈
(1st ‘(𝐴𝐹𝐵))) |