Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindicclemlub | GIF version |
Description: Lemma for dedekindicc 13251. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindicc.lss | ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
dedekindicc.uss | ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
dedekindicc.lm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
dedekindicc.um | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
dedekindicc.lr | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindicc.ur | ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindicc.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindicc.loc | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
dedekindicc.ab | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
dedekindicclemlub | ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindicc.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | dedekindicc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | dedekindicc.ab | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
4 | dedekindicc.lss | . 2 ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) | |
5 | dedekindicc.lm | . . 3 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) | |
6 | eleq1w 2227 | . . . . 5 ⊢ (𝑞 = 𝑥 → (𝑞 ∈ 𝐿 ↔ 𝑥 ∈ 𝐿)) | |
7 | 6 | cbvrexv 2693 | . . . 4 ⊢ (∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿 ↔ ∃𝑥 ∈ (𝐴[,]𝐵)𝑥 ∈ 𝐿) |
8 | rexex 2512 | . . . 4 ⊢ (∃𝑥 ∈ (𝐴[,]𝐵)𝑥 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) | |
9 | 7, 8 | sylbi 120 | . . 3 ⊢ (∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) |
10 | 5, 9 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐿) |
11 | dedekindicc.uss | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) | |
12 | dedekindicc.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) | |
13 | dedekindicc.lr | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
14 | dedekindicc.ur | . . 3 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
15 | dedekindicc.disj | . . 3 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
16 | dedekindicc.loc | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
17 | 1, 2, 4, 11, 5, 12, 13, 14, 15, 16 | dedekindicclemloc 13246 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
18 | 1, 2, 3, 4, 10, 17 | suplociccex 13243 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 < clt 7933 [,]cicc 9827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-icc 9831 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: dedekindicclemlu 13248 |
Copyright terms: Public domain | W3C validator |