ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemlub GIF version

Theorem dedekindicclemlub 15297
Description: Lemma for dedekindicc 15301. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicclemlub (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥,𝑦,𝑧   𝐵,𝑞,𝑟,𝑥,𝑦,𝑧   𝐿,𝑞,𝑟,𝑥,𝑦,𝑧   𝑈,𝑞,𝑟,𝑦,𝑧   𝜑,𝑞,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑟)   𝑈(𝑥)

Proof of Theorem dedekindicclemlub
StepHypRef Expression
1 dedekindicc.a . 2 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . 2 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.ab . 2 (𝜑𝐴 < 𝐵)
4 dedekindicc.lss . 2 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . 3 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 eleq1w 2290 . . . . 5 (𝑞 = 𝑥 → (𝑞𝐿𝑥𝐿))
76cbvrexv 2766 . . . 4 (∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿 ↔ ∃𝑥 ∈ (𝐴[,]𝐵)𝑥𝐿)
8 rexex 2576 . . . 4 (∃𝑥 ∈ (𝐴[,]𝐵)𝑥𝐿 → ∃𝑥 𝑥𝐿)
97, 8sylbi 121 . . 3 (∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿 → ∃𝑥 𝑥𝐿)
105, 9syl 14 . 2 (𝜑 → ∃𝑥 𝑥𝐿)
11 dedekindicc.uss . . 3 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
12 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
13 dedekindicc.lr . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
14 dedekindicc.ur . . 3 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
15 dedekindicc.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
16 dedekindicc.loc . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
171, 2, 4, 11, 5, 12, 13, 14, 15, 16dedekindicclemloc 15296 . 2 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
181, 2, 3, 4, 10, 17suplociccex 15293 1 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  cin 3196  wss 3197  c0 3491   class class class wbr 4082  (class class class)co 6000  cr 7994   < clt 8177  [,]cicc 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-icc 10087  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  dedekindicclemlu  15298
  Copyright terms: Public domain W3C validator