ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemlub GIF version

Theorem dedekindeulemlub 15288
Description: Lemma for dedekindeu 15291. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemlub (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Distinct variable groups:   𝐿,𝑞,𝑟,𝑥,𝑦,𝑧   𝑈,𝑞,𝑟,𝑦,𝑧   𝜑,𝑞,𝑟,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem dedekindeulemlub
StepHypRef Expression
1 dedekindeu.lss . 2 (𝜑𝐿 ⊆ ℝ)
2 dedekindeu.lm . . 3 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
3 eleq1w 2290 . . . . 5 (𝑞 = 𝑥 → (𝑞𝐿𝑥𝐿))
43cbvrexv 2766 . . . 4 (∃𝑞 ∈ ℝ 𝑞𝐿 ↔ ∃𝑥 ∈ ℝ 𝑥𝐿)
5 rexex 2576 . . . 4 (∃𝑥 ∈ ℝ 𝑥𝐿 → ∃𝑥 𝑥𝐿)
64, 5sylbi 121 . . 3 (∃𝑞 ∈ ℝ 𝑞𝐿 → ∃𝑥 𝑥𝐿)
72, 6syl 14 . 2 (𝜑 → ∃𝑥 𝑥𝐿)
8 dedekindeu.uss . . 3 (𝜑𝑈 ⊆ ℝ)
9 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
10 dedekindeu.lr . . 3 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
11 dedekindeu.ur . . 3 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
12 dedekindeu.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
13 dedekindeu.loc . . 3 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
141, 8, 2, 9, 10, 11, 12, 13dedekindeulemub 15286 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
151, 8, 2, 9, 10, 11, 12, 13dedekindeulemloc 15287 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
16 axsuploc 8215 . 2 (((𝐿 ⊆ ℝ ∧ ∃𝑥 𝑥𝐿) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
171, 7, 14, 15, 16syl22anc 1272 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  cin 3196  wss 3197  c0 3491   class class class wbr 4082  cr 7994   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltwlin 8108  ax-pre-suploc 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  dedekindeulemlu  15289
  Copyright terms: Public domain W3C validator