ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemlub GIF version

Theorem dedekindeulemlub 14369
Description: Lemma for dedekindeu 14372. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemlub (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Distinct variable groups:   𝐿,𝑞,𝑟,𝑥,𝑦,𝑧   𝑈,𝑞,𝑟,𝑦,𝑧   𝜑,𝑞,𝑟,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem dedekindeulemlub
StepHypRef Expression
1 dedekindeu.lss . 2 (𝜑𝐿 ⊆ ℝ)
2 dedekindeu.lm . . 3 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
3 eleq1w 2248 . . . . 5 (𝑞 = 𝑥 → (𝑞𝐿𝑥𝐿))
43cbvrexv 2716 . . . 4 (∃𝑞 ∈ ℝ 𝑞𝐿 ↔ ∃𝑥 ∈ ℝ 𝑥𝐿)
5 rexex 2533 . . . 4 (∃𝑥 ∈ ℝ 𝑥𝐿 → ∃𝑥 𝑥𝐿)
64, 5sylbi 121 . . 3 (∃𝑞 ∈ ℝ 𝑞𝐿 → ∃𝑥 𝑥𝐿)
72, 6syl 14 . 2 (𝜑 → ∃𝑥 𝑥𝐿)
8 dedekindeu.uss . . 3 (𝜑𝑈 ⊆ ℝ)
9 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
10 dedekindeu.lr . . 3 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
11 dedekindeu.ur . . 3 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
12 dedekindeu.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
13 dedekindeu.loc . . 3 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
141, 8, 2, 9, 10, 11, 12, 13dedekindeulemub 14367 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
151, 8, 2, 9, 10, 11, 12, 13dedekindeulemloc 14368 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
16 axsuploc 8043 . 2 (((𝐿 ⊆ ℝ ∧ ∃𝑥 𝑥𝐿) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
171, 7, 14, 15, 16syl22anc 1249 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1363  wex 1502  wcel 2158  wral 2465  wrex 2466  cin 3140  wss 3141  c0 3434   class class class wbr 4015  cr 7823   < clt 8005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-pre-ltwlin 7937  ax-pre-suploc 7945
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-cnv 4646  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011
This theorem is referenced by:  dedekindeulemlu  14370
  Copyright terms: Public domain W3C validator