| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemlub | GIF version | ||
| Description: Lemma for dedekindeu 15037. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
| dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
| dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
| dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
| dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| Ref | Expression |
|---|---|
| dedekindeulemlub | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindeu.lss | . 2 ⊢ (𝜑 → 𝐿 ⊆ ℝ) | |
| 2 | dedekindeu.lm | . . 3 ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | |
| 3 | eleq1w 2265 | . . . . 5 ⊢ (𝑞 = 𝑥 → (𝑞 ∈ 𝐿 ↔ 𝑥 ∈ 𝐿)) | |
| 4 | 3 | cbvrexv 2738 | . . . 4 ⊢ (∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿 ↔ ∃𝑥 ∈ ℝ 𝑥 ∈ 𝐿) |
| 5 | rexex 2551 | . . . 4 ⊢ (∃𝑥 ∈ ℝ 𝑥 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) | |
| 6 | 4, 5 | sylbi 121 | . . 3 ⊢ (∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) |
| 7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐿) |
| 8 | dedekindeu.uss | . . 3 ⊢ (𝜑 → 𝑈 ⊆ ℝ) | |
| 9 | dedekindeu.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | |
| 10 | dedekindeu.lr | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
| 11 | dedekindeu.ur | . . 3 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
| 12 | dedekindeu.disj | . . 3 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
| 13 | dedekindeu.loc | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
| 14 | 1, 8, 2, 9, 10, 11, 12, 13 | dedekindeulemub 15032 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| 15 | 1, 8, 2, 9, 10, 11, 12, 13 | dedekindeulemloc 15033 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
| 16 | axsuploc 8144 | . 2 ⊢ (((𝐿 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐿) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | |
| 17 | 1, 7, 14, 15, 16 | syl22anc 1250 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ∩ cin 3164 ⊆ wss 3165 ∅c0 3459 class class class wbr 4043 ℝcr 7923 < clt 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltwlin 8037 ax-pre-suploc 8045 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 |
| This theorem is referenced by: dedekindeulemlu 15035 |
| Copyright terms: Public domain | W3C validator |