ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemlub GIF version

Theorem dedekindeulemlub 15034
Description: Lemma for dedekindeu 15037. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemlub (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Distinct variable groups:   𝐿,𝑞,𝑟,𝑥,𝑦,𝑧   𝑈,𝑞,𝑟,𝑦,𝑧   𝜑,𝑞,𝑟,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑈(𝑥)

Proof of Theorem dedekindeulemlub
StepHypRef Expression
1 dedekindeu.lss . 2 (𝜑𝐿 ⊆ ℝ)
2 dedekindeu.lm . . 3 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
3 eleq1w 2265 . . . . 5 (𝑞 = 𝑥 → (𝑞𝐿𝑥𝐿))
43cbvrexv 2738 . . . 4 (∃𝑞 ∈ ℝ 𝑞𝐿 ↔ ∃𝑥 ∈ ℝ 𝑥𝐿)
5 rexex 2551 . . . 4 (∃𝑥 ∈ ℝ 𝑥𝐿 → ∃𝑥 𝑥𝐿)
64, 5sylbi 121 . . 3 (∃𝑞 ∈ ℝ 𝑞𝐿 → ∃𝑥 𝑥𝐿)
72, 6syl 14 . 2 (𝜑 → ∃𝑥 𝑥𝐿)
8 dedekindeu.uss . . 3 (𝜑𝑈 ⊆ ℝ)
9 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
10 dedekindeu.lr . . 3 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
11 dedekindeu.ur . . 3 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
12 dedekindeu.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
13 dedekindeu.loc . . 3 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
141, 8, 2, 9, 10, 11, 12, 13dedekindeulemub 15032 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
151, 8, 2, 9, 10, 11, 12, 13dedekindeulemloc 15033 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
16 axsuploc 8144 . 2 (((𝐿 ⊆ ℝ ∧ ∃𝑥 𝑥𝐿) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
171, 7, 14, 15, 16syl22anc 1250 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  cin 3164  wss 3165  c0 3459   class class class wbr 4043  cr 7923   < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltwlin 8037  ax-pre-suploc 8045
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112
This theorem is referenced by:  dedekindeulemlu  15035
  Copyright terms: Public domain W3C validator