Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindeulemlub | GIF version |
Description: Lemma for dedekindeu 13672. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
Ref | Expression |
---|---|
dedekindeulemlub | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindeu.lss | . 2 ⊢ (𝜑 → 𝐿 ⊆ ℝ) | |
2 | dedekindeu.lm | . . 3 ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | |
3 | eleq1w 2236 | . . . . 5 ⊢ (𝑞 = 𝑥 → (𝑞 ∈ 𝐿 ↔ 𝑥 ∈ 𝐿)) | |
4 | 3 | cbvrexv 2702 | . . . 4 ⊢ (∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿 ↔ ∃𝑥 ∈ ℝ 𝑥 ∈ 𝐿) |
5 | rexex 2521 | . . . 4 ⊢ (∃𝑥 ∈ ℝ 𝑥 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) | |
6 | 4, 5 | sylbi 121 | . . 3 ⊢ (∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) |
7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐿) |
8 | dedekindeu.uss | . . 3 ⊢ (𝜑 → 𝑈 ⊆ ℝ) | |
9 | dedekindeu.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | |
10 | dedekindeu.lr | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
11 | dedekindeu.ur | . . 3 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
12 | dedekindeu.disj | . . 3 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
13 | dedekindeu.loc | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
14 | 1, 8, 2, 9, 10, 11, 12, 13 | dedekindeulemub 13667 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
15 | 1, 8, 2, 9, 10, 11, 12, 13 | dedekindeulemloc 13668 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
16 | axsuploc 8004 | . 2 ⊢ (((𝐿 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐿) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | |
17 | 1, 7, 14, 15, 16 | syl22anc 1239 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∃wex 1490 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 ∩ cin 3126 ⊆ wss 3127 ∅c0 3420 class class class wbr 3998 ℝcr 7785 < clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltwlin 7899 ax-pre-suploc 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 |
This theorem is referenced by: dedekindeulemlu 13670 |
Copyright terms: Public domain | W3C validator |