![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dedekindeulemlub | GIF version |
Description: Lemma for dedekindeu 14505. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
Ref | Expression |
---|---|
dedekindeulemlub | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindeu.lss | . 2 ⊢ (𝜑 → 𝐿 ⊆ ℝ) | |
2 | dedekindeu.lm | . . 3 ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | |
3 | eleq1w 2250 | . . . . 5 ⊢ (𝑞 = 𝑥 → (𝑞 ∈ 𝐿 ↔ 𝑥 ∈ 𝐿)) | |
4 | 3 | cbvrexv 2719 | . . . 4 ⊢ (∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿 ↔ ∃𝑥 ∈ ℝ 𝑥 ∈ 𝐿) |
5 | rexex 2536 | . . . 4 ⊢ (∃𝑥 ∈ ℝ 𝑥 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) | |
6 | 4, 5 | sylbi 121 | . . 3 ⊢ (∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿 → ∃𝑥 𝑥 ∈ 𝐿) |
7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐿) |
8 | dedekindeu.uss | . . 3 ⊢ (𝜑 → 𝑈 ⊆ ℝ) | |
9 | dedekindeu.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | |
10 | dedekindeu.lr | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
11 | dedekindeu.ur | . . 3 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
12 | dedekindeu.disj | . . 3 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
13 | dedekindeu.loc | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
14 | 1, 8, 2, 9, 10, 11, 12, 13 | dedekindeulemub 14500 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
15 | 1, 8, 2, 9, 10, 11, 12, 13 | dedekindeulemloc 14501 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
16 | axsuploc 8050 | . 2 ⊢ (((𝐿 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐿) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) | |
17 | 1, 7, 14, 15, 16 | syl22anc 1250 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ∩ cin 3143 ⊆ wss 3144 ∅c0 3437 class class class wbr 4018 ℝcr 7830 < clt 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-pre-ltwlin 7944 ax-pre-suploc 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4647 df-cnv 4649 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 |
This theorem is referenced by: dedekindeulemlu 14503 |
Copyright terms: Public domain | W3C validator |