ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn GIF version

Theorem chfnrn 5607
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem chfnrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5544 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
21biimpd 143 . . . 4 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
3 eleq1 2233 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝑥𝑦𝑥))
43biimpcd 158 . . . . . 6 ((𝐹𝑥) ∈ 𝑥 → ((𝐹𝑥) = 𝑦𝑦𝑥))
54ralimi 2533 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → ∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥))
6 rexim 2564 . . . . 5 (∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
75, 6syl 14 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
82, 7sylan9 407 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 𝑦𝑥))
9 eluni2 3800 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
108, 9syl6ibr 161 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹𝑦 𝐴))
1110ssrdv 3153 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121   cuni 3796  ran crn 4612   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator