![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > chfnrn | GIF version |
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
chfnrn | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 5605 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
2 | 1 | biimpd 144 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
3 | eleq1 2256 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
4 | 3 | biimpcd 159 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ 𝑥 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
5 | 4 | ralimi 2557 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
6 | rexim 2588 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
8 | 2, 7 | sylan9 409 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
9 | eluni2 3840 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 8, 9 | imbitrrdi 162 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ∪ 𝐴)) |
11 | 10 | ssrdv 3186 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 ∪ cuni 3836 ran crn 4661 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |