Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > chfnrn | GIF version |
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
chfnrn | ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 5555 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
2 | 1 | biimpd 144 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
3 | eleq1 2238 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
4 | 3 | biimpcd 159 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ 𝑥 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
5 | 4 | ralimi 2538 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥)) |
6 | rexim 2569 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝑥) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
8 | 2, 7 | sylan9 409 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥)) |
9 | eluni2 3809 | . . 3 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) | |
10 | 8, 9 | syl6ibr 162 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ∪ 𝐴)) |
11 | 10 | ssrdv 3159 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝑥) → ran 𝐹 ⊆ ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 ⊆ wss 3127 ∪ cuni 3805 ran crn 4621 Fn wfn 5203 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |