ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick2 GIF version

Theorem reupick2 3413
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick2 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reupick2
StepHypRef Expression
1 ancr 319 . . . . . 6 ((𝜓𝜑) → (𝜓 → (𝜑𝜓)))
21ralimi 2533 . . . . 5 (∀𝑥𝐴 (𝜓𝜑) → ∀𝑥𝐴 (𝜓 → (𝜑𝜓)))
3 rexim 2564 . . . . 5 (∀𝑥𝐴 (𝜓 → (𝜑𝜓)) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
42, 3syl 14 . . . 4 (∀𝑥𝐴 (𝜓𝜑) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
5 reupick3 3412 . . . . . 6 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
653exp 1197 . . . . 5 (∃!𝑥𝐴 𝜑 → (∃𝑥𝐴 (𝜑𝜓) → (𝑥𝐴 → (𝜑𝜓))))
76com12 30 . . . 4 (∃𝑥𝐴 (𝜑𝜓) → (∃!𝑥𝐴 𝜑 → (𝑥𝐴 → (𝜑𝜓))))
84, 7syl6 33 . . 3 (∀𝑥𝐴 (𝜓𝜑) → (∃𝑥𝐴 𝜓 → (∃!𝑥𝐴 𝜑 → (𝑥𝐴 → (𝜑𝜓)))))
983imp1 1215 . 2 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
10 rsp 2517 . . . 4 (∀𝑥𝐴 (𝜓𝜑) → (𝑥𝐴 → (𝜓𝜑)))
11103ad2ant1 1013 . . 3 ((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) → (𝑥𝐴 → (𝜓𝜑)))
1211imp 123 . 2 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜓𝜑))
139, 12impbid 128 1 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-ral 2453  df-rex 2454  df-reu 2455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator