Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick2 GIF version

Theorem reupick2 3367
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick2 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reupick2
StepHypRef Expression
1 ancr 319 . . . . . 6 ((𝜓𝜑) → (𝜓 → (𝜑𝜓)))
21ralimi 2498 . . . . 5 (∀𝑥𝐴 (𝜓𝜑) → ∀𝑥𝐴 (𝜓 → (𝜑𝜓)))
3 rexim 2529 . . . . 5 (∀𝑥𝐴 (𝜓 → (𝜑𝜓)) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
42, 3syl 14 . . . 4 (∀𝑥𝐴 (𝜓𝜑) → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓)))
5 reupick3 3366 . . . . . 6 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
653exp 1181 . . . . 5 (∃!𝑥𝐴 𝜑 → (∃𝑥𝐴 (𝜑𝜓) → (𝑥𝐴 → (𝜑𝜓))))
76com12 30 . . . 4 (∃𝑥𝐴 (𝜑𝜓) → (∃!𝑥𝐴 𝜑 → (𝑥𝐴 → (𝜑𝜓))))
84, 7syl6 33 . . 3 (∀𝑥𝐴 (𝜓𝜑) → (∃𝑥𝐴 𝜓 → (∃!𝑥𝐴 𝜑 → (𝑥𝐴 → (𝜑𝜓)))))
983imp1 1199 . 2 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
10 rsp 2483 . . . 4 (∀𝑥𝐴 (𝜓𝜑) → (𝑥𝐴 → (𝜓𝜑)))
11103ad2ant1 1003 . . 3 ((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) → (𝑥𝐴 → (𝜓𝜑)))
1211imp 123 . 2 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜓𝜑))
139, 12impbid 128 1 (((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418  ∃!wreu 2419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516 This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-ral 2422  df-rex 2423  df-reu 2424 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator