![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss2iun | GIF version |
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ss2iun | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3055 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
2 | 1 | ralimi 2467 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
3 | rexim 2498 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | eliun 3781 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
6 | eliun 3781 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | 4, 5, 6 | 3imtr4g 204 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
8 | 7 | ssrdv 3067 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1461 ∀wral 2388 ∃wrex 2389 ⊆ wss 3035 ∪ ciun 3777 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-in 3041 df-ss 3048 df-iun 3779 |
This theorem is referenced by: iuneq2 3793 abnexg 4325 dvfvalap 12599 |
Copyright terms: Public domain | W3C validator |