ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem GIF version

Theorem rmo2ilem 3079
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2ilem (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 263 . . . . 5 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
21albii 1484 . . . 4 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
3 df-ral 2480 . . . 4 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
42, 3bitr4i 187 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
54exbii 1619 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
6 nfv 1542 . . . . 5 𝑦 𝑥𝐴
7 rmo2.1 . . . . 5 𝑦𝜑
86, 7nfan 1579 . . . 4 𝑦(𝑥𝐴𝜑)
98mo2r 2097 . . 3 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) → ∃*𝑥(𝑥𝐴𝜑))
10 df-rmo 2483 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
119, 10sylibr 134 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
125, 11sylbir 135 1 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wnf 1474  wex 1506  ∃*wmo 2046  wcel 2167  wral 2475  ∃*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-ral 2480  df-rmo 2483
This theorem is referenced by:  rmo2i  3080
  Copyright terms: Public domain W3C validator