Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem GIF version

Theorem rmo2ilem 2999
 Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2ilem (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 261 . . . . 5 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
21albii 1447 . . . 4 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
3 df-ral 2422 . . . 4 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
42, 3bitr4i 186 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
54exbii 1585 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
6 nfv 1509 . . . . 5 𝑦 𝑥𝐴
7 rmo2.1 . . . . 5 𝑦𝜑
86, 7nfan 1545 . . . 4 𝑦(𝑥𝐴𝜑)
98mo2r 2052 . . 3 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) → ∃*𝑥(𝑥𝐴𝜑))
10 df-rmo 2425 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
119, 10sylibr 133 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
125, 11sylbir 134 1 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  ∀wal 1330   = wceq 1332  Ⅎwnf 1437  ∃wex 1469   ∈ wcel 1481  ∃*wmo 2001  ∀wral 2417  ∃*wrmo 2420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-ral 2422  df-rmo 2425 This theorem is referenced by:  rmo2i  3000
 Copyright terms: Public domain W3C validator