| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmo2ilem | GIF version | ||
| Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
| Ref | Expression |
|---|---|
| rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| rmo2ilem | ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 263 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
| 2 | 1 | albii 1484 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
| 3 | df-ral 2480 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
| 4 | 2, 3 | bitr4i 187 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
| 5 | 4 | exbii 1619 | . 2 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
| 6 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 7 | rmo2.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 8 | 6, 7 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 8 | mo2r 2097 | . . 3 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 10 | df-rmo 2483 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
| 12 | 5, 11 | sylbir 135 | 1 ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∃*wmo 2046 ∈ wcel 2167 ∀wral 2475 ∃*wrmo 2478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-ral 2480 df-rmo 2483 |
| This theorem is referenced by: rmo2i 3080 |
| Copyright terms: Public domain | W3C validator |