![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmo2ilem | GIF version |
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
Ref | Expression |
---|---|
rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
rmo2ilem | ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 261 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
2 | 1 | albii 1414 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
3 | df-ral 2380 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
4 | 2, 3 | bitr4i 186 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
5 | 4 | exbii 1552 | . 2 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
6 | nfv 1476 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
7 | rmo2.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
8 | 6, 7 | nfan 1512 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 8 | mo2r 2012 | . . 3 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
10 | df-rmo 2383 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
11 | 9, 10 | sylibr 133 | . 2 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
12 | 5, 11 | sylbir 134 | 1 ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1297 = wceq 1299 Ⅎwnf 1404 ∃wex 1436 ∈ wcel 1448 ∃*wmo 1961 ∀wral 2375 ∃*wrmo 2378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-ral 2380 df-rmo 2383 |
This theorem is referenced by: rmo2i 2951 |
Copyright terms: Public domain | W3C validator |