Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqi | GIF version |
Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 2665 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: ralrab2 2895 ralprg 3634 raltpg 3636 omsinds 4606 ralxp 4754 ralrnmpo 5967 nnnninfeq2 7105 fzprval 10038 fztpval 10039 seq3f1olemp 10458 zsumdc 11347 zproddc 11542 infssuzex 11904 2prm 12081 nninfsellemdc 14043 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |