ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb3an GIF version

Theorem sb3an 1929
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
Assertion
Ref Expression
sb3an ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))

Proof of Theorem sb3an
StepHypRef Expression
1 df-3an 964 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbbii 1738 . 2 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sban 1926 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒))
4 sban 1926 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
54anbi1i 453 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
6 df-3an 964 . . 3 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
75, 6bitr4i 186 . 2 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
82, 3, 73bitri 205 1 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 962  [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-3an 964  df-nf 1437  df-sb 1736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator