![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb3an | GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
Ref | Expression |
---|---|
sb3an | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 980 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | sbbii 1765 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ [𝑦 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | sban 1955 | . 2 ⊢ ([𝑦 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒)) | |
4 | sban 1955 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
5 | 4 | anbi1i 458 | . . 3 ⊢ (([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒)) |
6 | df-3an 980 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒)) | |
7 | 5, 6 | bitr4i 187 | . 2 ⊢ (([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |