ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb3an GIF version

Theorem sb3an 1958
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
Assertion
Ref Expression
sb3an ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))

Proof of Theorem sb3an
StepHypRef Expression
1 df-3an 980 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbbii 1765 . 2 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sban 1955 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒))
4 sban 1955 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
54anbi1i 458 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
6 df-3an 980 . . 3 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒))
75, 6bitr4i 187 . 2 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
82, 3, 73bitri 206 1 ([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 978  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator