| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sban | GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbanv 1904 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) | |
| 2 | 1 | sbbii 1779 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) | 
| 3 | sbanv 1904 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | 
| 5 | ax-17 1540 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑧(𝜑 ∧ 𝜓)) | |
| 6 | 5 | sbco2vh 1964 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) | 
| 7 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 8 | 7 | sbco2vh 1964 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
| 9 | ax-17 1540 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 10 | 9 | sbco2vh 1964 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) | 
| 11 | 8, 10 | anbi12i 460 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
| 12 | 4, 6, 11 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sb3an 1977 sbbi 1978 sbmo 2104 moanim 2119 sbabel 2366 nfrexdya 2533 cbvreu 2727 rmo3f 2961 sbcan 3032 sbcang 3033 rmo3 3081 inab 3431 difab 3432 exss 4260 inopab 4798 bdcriota 15529 | 
| Copyright terms: Public domain | W3C validator |