Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sban | GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbanv 1887 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) | |
2 | 1 | sbbii 1763 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) |
3 | sbanv 1887 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
5 | ax-17 1524 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑧(𝜑 ∧ 𝜓)) | |
6 | 5 | sbco2vh 1943 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
7 | ax-17 1524 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
8 | 7 | sbco2vh 1943 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
9 | ax-17 1524 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
10 | 9 | sbco2vh 1943 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) |
11 | 8, 10 | anbi12i 460 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
12 | 4, 6, 11 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: sb3an 1956 sbbi 1957 sbmo 2083 moanim 2098 sbabel 2344 nfrexdya 2511 cbvreu 2699 rmo3f 2932 sbcan 3003 sbcang 3004 rmo3 3052 inab 3401 difab 3402 exss 4221 inopab 4752 bdcriota 14195 |
Copyright terms: Public domain | W3C validator |