| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sban | GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| sban | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbanv 1916 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) | |
| 2 | 1 | sbbii 1791 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) |
| 3 | sbanv 1916 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
| 5 | ax-17 1552 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑧(𝜑 ∧ 𝜓)) | |
| 6 | 5 | sbco2vh 1976 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
| 7 | ax-17 1552 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 8 | 7 | sbco2vh 1976 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 9 | ax-17 1552 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 10 | 9 | sbco2vh 1976 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) |
| 11 | 8, 10 | anbi12i 460 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| 12 | 4, 6, 11 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 [wsb 1788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 |
| This theorem is referenced by: sb3an 1989 sbbi 1990 sbmo 2117 moanim 2132 sbabel 2379 nfrexdya 2546 cbvreu 2743 rmo3f 2980 sbcan 3051 sbcang 3052 rmo3 3101 inab 3452 difab 3453 exss 4292 inopab 4831 bdcriota 16156 |
| Copyright terms: Public domain | W3C validator |