ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sban GIF version

Theorem sban 1953
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbanv 1887 . . . 4 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓))
21sbbii 1763 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓))
3 sbanv 1887 . . 3 ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
42, 3bitri 184 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
5 ax-17 1524 . . 3 ((𝜑𝜓) → ∀𝑧(𝜑𝜓))
65sbco2vh 1943 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](𝜑𝜓))
7 ax-17 1524 . . . 4 (𝜑 → ∀𝑧𝜑)
87sbco2vh 1943 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
9 ax-17 1524 . . . 4 (𝜓 → ∀𝑧𝜓)
109sbco2vh 1943 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)
118, 10anbi12i 460 . 2 (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ∧ [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
124, 6, 113bitr3i 210 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  [wsb 1760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761
This theorem is referenced by:  sb3an  1956  sbbi  1957  sbmo  2083  moanim  2098  sbabel  2344  nfrexdya  2511  cbvreu  2699  rmo3f  2932  sbcan  3003  sbcang  3004  rmo3  3052  inab  3401  difab  3402  exss  4221  inopab  4752  bdcriota  14195
  Copyright terms: Public domain W3C validator