Proof of Theorem sbco4lem
| Step | Hyp | Ref
 | Expression | 
| 1 |   | sbcom2 2006 | 
. . 3
⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑) | 
| 2 | 1 | sbbii 1779 | 
. 2
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑) | 
| 3 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑤𝜑 | 
| 4 | 3 | sbco2 1984 | 
. . . . . 6
⊢ ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑) | 
| 5 | 4 | sbbii 1779 | 
. . . . 5
⊢ ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 6 | 5 | sbbii 1779 | 
. . . 4
⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 7 | 6 | sbbii 1779 | 
. . 3
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 8 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑤[𝑦 / 𝑥][𝑣 / 𝑦]𝜑 | 
| 9 | 8 | sbco2 1984 | 
. . 3
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 10 | 7, 9 | bitri 184 | 
. 2
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 11 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑣[𝑤 / 𝑦]𝜑 | 
| 12 | 11 | sbid2 1864 | 
. . . 4
⊢ ([𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑) | 
| 13 | 12 | sbbii 1779 | 
. . 3
⊢ ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| 14 | 13 | sbbii 1779 | 
. 2
⊢ ([𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| 15 | 2, 10, 14 | 3bitr3i 210 | 
1
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |