ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco4lem GIF version

Theorem sbco4lem 1979
Description: Lemma for sbco4 1980. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.)
Assertion
Ref Expression
sbco4lem ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑤,𝑣,𝜑   𝑥,𝑣,𝑤   𝑦,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4lem
StepHypRef Expression
1 sbcom2 1960 . . 3 ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑)
21sbbii 1738 . 2 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑)
3 nfv 1508 . . . . . . 7 𝑤𝜑
43sbco2 1936 . . . . . 6 ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑)
54sbbii 1738 . . . . 5 ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
65sbbii 1738 . . . 4 ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
76sbbii 1738 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
8 nfv 1508 . . . 4 𝑤[𝑦 / 𝑥][𝑣 / 𝑦]𝜑
98sbco2 1936 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
107, 9bitri 183 . 2 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
11 nfv 1508 . . . . 5 𝑣[𝑤 / 𝑦]𝜑
1211sbid2 1822 . . . 4 ([𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)
1312sbbii 1738 . . 3 ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
1413sbbii 1738 . 2 ([𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
152, 10, 143bitr3i 209 1 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736
This theorem is referenced by:  sbco4  1980
  Copyright terms: Public domain W3C validator