Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfs1v | GIF version |
Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1918 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
2 | 1 | nfi 1442 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1440 [wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: nfsbxy 1922 nfsbxyt 1923 sbco3v 1949 sbcomxyyz 1952 sbnf2 1961 mo2n 2034 mo23 2047 mor 2048 clelab 2283 cbvralf 2674 cbvrexf 2675 cbvralsv 2694 cbvrexsv 2695 cbvrab 2710 sbhypf 2761 mob2 2892 reu2 2900 sbcralt 3013 sbcrext 3014 sbcralg 3015 sbcreug 3017 sbcel12g 3046 sbceqg 3047 cbvreucsf 3095 cbvrabcsf 3096 disjiun 3960 cbvopab1 4037 cbvopab1s 4039 csbopabg 4042 cbvmptf 4058 cbvmpt 4059 opelopabsb 4219 frind 4311 tfis 4540 findes 4560 opeliunxp 4638 ralxpf 4729 rexxpf 4730 cbviota 5137 csbiotag 5160 isarep1 5253 cbvriota 5784 csbriotag 5786 abrexex2g 6062 abrexex2 6066 dfoprab4f 6135 finexdc 6840 ssfirab 6871 uzind4s 9484 zsupcllemstep 11813 bezoutlemmain 11862 cbvrald 13321 bj-bdfindes 13483 bj-findes 13515 |
Copyright terms: Public domain | W3C validator |