| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfs1v | GIF version | ||
| Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbs1 1966 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 2 | 1 | nfi 1485 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1483 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: nfsbxy 1970 nfsbxyt 1971 sbco3v 1997 sbcomxyyz 2000 sbnf2 2009 mo2n 2082 mo23 2095 mor 2096 clelab 2331 cbvralf 2730 cbvrexf 2731 cbvralsv 2754 cbvrexsv 2755 cbvrab 2770 sbhypf 2822 mob2 2953 reu2 2961 sbcralt 3075 sbcrext 3076 sbcralg 3077 sbcreug 3079 sbcel12g 3108 sbceqg 3109 cbvreucsf 3158 cbvrabcsf 3159 disjiun 4039 cbvopab1 4117 cbvopab1s 4119 csbopabg 4122 cbvmptf 4138 cbvmpt 4139 opelopabsb 4306 frind 4399 tfis 4631 findes 4651 opeliunxp 4730 ralxpf 4824 rexxpf 4825 cbviota 5237 csbiotag 5264 isarep1 5360 cbvriota 5910 csbriotag 5912 abrexex2g 6205 abrexex2 6209 dfoprab4f 6279 finexdc 6999 ssfirab 7033 uzind4s 9711 zsupcllemstep 10372 bezoutlemmain 12319 nnwosdc 12360 cbvrald 15724 bj-bdfindes 15885 bj-findes 15917 |
| Copyright terms: Public domain | W3C validator |