| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfs1v | GIF version | ||
| Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbs1 1967 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 2 | 1 | nfi 1486 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: nfsbxy 1971 nfsbxyt 1972 sbco3v 1998 sbcomxyyz 2001 sbnf2 2010 mo2n 2083 mo23 2097 mor 2098 clelab 2333 cbvralf 2733 cbvrexf 2734 cbvralsv 2758 cbvrexsv 2759 cbvrab 2774 sbhypf 2827 mob2 2960 reu2 2968 sbcralt 3082 sbcrext 3083 sbcralg 3084 sbcreug 3086 sbcel12g 3116 sbceqg 3117 cbvreucsf 3166 cbvrabcsf 3167 disjiun 4054 cbvopab1 4133 cbvopab1s 4135 csbopabg 4138 cbvmptf 4154 cbvmpt 4155 opelopabsb 4324 frind 4417 tfis 4649 findes 4669 opeliunxp 4748 ralxpf 4842 rexxpf 4843 cbviota 5256 csbiotag 5283 isarep1 5379 cbvriota 5933 csbriotag 5935 abrexex2g 6228 abrexex2 6232 dfoprab4f 6302 finexdc 7025 ssfirab 7059 uzind4s 9746 zsupcllemstep 10409 bezoutlemmain 12434 nnwosdc 12475 cbvrald 15924 bj-bdfindes 16084 bj-findes 16116 |
| Copyright terms: Public domain | W3C validator |