Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfs1v | GIF version |
Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1931 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
2 | 1 | nfi 1455 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1453 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: nfsbxy 1935 nfsbxyt 1936 sbco3v 1962 sbcomxyyz 1965 sbnf2 1974 mo2n 2047 mo23 2060 mor 2061 clelab 2296 cbvralf 2689 cbvrexf 2690 cbvralsv 2712 cbvrexsv 2713 cbvrab 2728 sbhypf 2779 mob2 2910 reu2 2918 sbcralt 3031 sbcrext 3032 sbcralg 3033 sbcreug 3035 sbcel12g 3064 sbceqg 3065 cbvreucsf 3113 cbvrabcsf 3114 disjiun 3984 cbvopab1 4062 cbvopab1s 4064 csbopabg 4067 cbvmptf 4083 cbvmpt 4084 opelopabsb 4245 frind 4337 tfis 4567 findes 4587 opeliunxp 4666 ralxpf 4757 rexxpf 4758 cbviota 5165 csbiotag 5191 isarep1 5284 cbvriota 5819 csbriotag 5821 abrexex2g 6099 abrexex2 6103 dfoprab4f 6172 finexdc 6880 ssfirab 6911 uzind4s 9549 zsupcllemstep 11900 bezoutlemmain 11953 nnwosdc 11994 cbvrald 13823 bj-bdfindes 13984 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |