Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfs1v | GIF version |
Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1926 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
2 | 1 | nfi 1450 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: nfsbxy 1930 nfsbxyt 1931 sbco3v 1957 sbcomxyyz 1960 sbnf2 1969 mo2n 2042 mo23 2055 mor 2056 clelab 2292 cbvralf 2685 cbvrexf 2686 cbvralsv 2708 cbvrexsv 2709 cbvrab 2724 sbhypf 2775 mob2 2906 reu2 2914 sbcralt 3027 sbcrext 3028 sbcralg 3029 sbcreug 3031 sbcel12g 3060 sbceqg 3061 cbvreucsf 3109 cbvrabcsf 3110 disjiun 3977 cbvopab1 4055 cbvopab1s 4057 csbopabg 4060 cbvmptf 4076 cbvmpt 4077 opelopabsb 4238 frind 4330 tfis 4560 findes 4580 opeliunxp 4659 ralxpf 4750 rexxpf 4751 cbviota 5158 csbiotag 5181 isarep1 5274 cbvriota 5808 csbriotag 5810 abrexex2g 6088 abrexex2 6092 dfoprab4f 6161 finexdc 6868 ssfirab 6899 uzind4s 9528 zsupcllemstep 11878 bezoutlemmain 11931 nnwosdc 11972 cbvrald 13669 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |