| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfs1v | GIF version | ||
| Description: 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbs1 1989 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 2 | 1 | nfi 1508 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: nfsbxy 1993 nfsbxyt 1994 sbco3v 2020 sbcomxyyz 2023 sbnf2 2032 mo2n 2105 mo23 2119 mor 2120 clelab 2355 cbvralf 2756 cbvrexf 2757 cbvralsv 2781 cbvrexsv 2782 cbvrab 2797 sbhypf 2850 mob2 2983 reu2 2991 sbcralt 3105 sbcrext 3106 sbcralg 3107 sbcreug 3109 sbcel12g 3139 sbceqg 3140 cbvreucsf 3189 cbvrabcsf 3190 disjiun 4077 cbvopab1 4156 cbvopab1s 4158 csbopabg 4161 cbvmptf 4177 cbvmpt 4178 opelopabsb 4347 frind 4442 tfis 4674 findes 4694 opeliunxp 4773 ralxpf 4867 rexxpf 4868 cbviota 5282 csbiotag 5310 isarep1 5406 cbvriota 5965 csbriotag 5967 abrexex2g 6263 abrexex2 6267 dfoprab4f 6337 finexdc 7060 ssfirab 7094 uzind4s 9781 zsupcllemstep 10444 bezoutlemmain 12514 nnwosdc 12555 cbvrald 16110 bj-bdfindes 16270 bj-findes 16302 |
| Copyright terms: Public domain | W3C validator |