![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbrim | GIF version |
Description: Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbrim.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
sbrim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 1969 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbrim.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | sbh 1787 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 3 | imbi1i 238 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
5 | 1, 4 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: sbco2d 1982 sbco2vd 1983 hbsbd 1998 |
Copyright terms: Public domain | W3C validator |