ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbrim GIF version

Theorem sbrim 1987
Description: Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sbrim.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
sbrim ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbrim
StepHypRef Expression
1 sbim 1984 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbrim.1 . . . 4 (𝜑 → ∀𝑥𝜑)
32sbh 1802 . . 3 ([𝑦 / 𝑥]𝜑𝜑)
43imbi1i 238 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
51, 4bitri 184 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373  [wsb 1788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789
This theorem is referenced by:  sbco2d  1997  sbco2vd  1998  hbsbd  2013
  Copyright terms: Public domain W3C validator