ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota GIF version

Theorem snriota 5827
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2451 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 sniota 5180 . . 3 (∃!𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
31, 2sylbi 120 . 2 (∃!𝑥𝐴 𝜑 → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
4 df-rab 2453 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-riota 5798 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
65sneqi 3588 . 2 {(𝑥𝐴 𝜑)} = {(℩𝑥(𝑥𝐴𝜑))}
73, 4, 63eqtr4g 2224 1 (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  ∃!weu 2014  wcel 2136  {cab 2151  ∃!wreu 2446  {crab 2448  {csn 3576  cio 5151  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  divalgmod  11864
  Copyright terms: Public domain W3C validator