ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota GIF version

Theorem snriota 5838
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2455 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 sniota 5189 . . 3 (∃!𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
31, 2sylbi 120 . 2 (∃!𝑥𝐴 𝜑 → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
4 df-rab 2457 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-riota 5809 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
65sneqi 3595 . 2 {(𝑥𝐴 𝜑)} = {(℩𝑥(𝑥𝐴𝜑))}
73, 4, 63eqtr4g 2228 1 (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  ∃!weu 2019  wcel 2141  {cab 2156  ∃!wreu 2450  {crab 2452  {csn 3583  cio 5158  crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by:  divalgmod  11886
  Copyright terms: Public domain W3C validator