![]() |
Intuitionistic Logic Explorer Theorem List (p. 37 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ifnebibdc 3601 | The converse of ifbi 3578 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ ((DECID 𝜑 ∧ DECID 𝜓 ∧ 𝐴 ≠ 𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑 ↔ 𝜓))) | ||
Syntax | cpw 3602 | Extend class notation to include power class. (The tilde in the Metamath token is meant to suggest the calligraphic font of the P.) |
class 𝒫 𝐴 | ||
Theorem | pwjust 3603* | Soundness justification theorem for df-pw 3604. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} | ||
Definition | df-pw 3604* | Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | ||
Theorem | pweq 3605 | Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | ||
Theorem | pweqi 3606 | Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝒫 𝐴 = 𝒫 𝐵 | ||
Theorem | pweqd 3607 | Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) | ||
Theorem | elpw 3608 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | velpw 3609* | Setvar variable membership in a power class (common case). See elpw 3608. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | ||
Theorem | elpwg 3610 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | elpwi 3611 | Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.) |
⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | ||
Theorem | elpwb 3612 | Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.) |
⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) | ||
Theorem | elpwid 3613 | An element of a power class is a subclass. Deduction form of elpwi 3611. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | elelpwi 3614 | If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) | ||
Theorem | nfpw 3615 | Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥𝒫 𝐴 | ||
Theorem | pwidg 3616 | Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | ||
Theorem | pwid 3617 | A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ 𝒫 𝐴 | ||
Theorem | pwss 3618* | Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Syntax | csn 3619 | Extend class notation to include singleton. |
class {𝐴} | ||
Syntax | cpr 3620 | Extend class notation to include unordered pair. |
class {𝐴, 𝐵} | ||
Syntax | ctp 3621 | Extend class notation to include unordered triplet. |
class {𝐴, 𝐵, 𝐶} | ||
Syntax | cop 3622 | Extend class notation to include ordered pair. |
class 〈𝐴, 𝐵〉 | ||
Syntax | cotp 3623 | Extend class notation to include ordered triple. |
class 〈𝐴, 𝐵, 𝐶〉 | ||
Theorem | snjust 3624* | Soundness justification theorem for df-sn 3625. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} | ||
Definition | df-sn 3625* | Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3633. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | ||
Definition | df-pr 3626 | Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3695. For a more traditional definition, but requiring a dummy variable, see dfpr2 3638. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | ||
Definition | df-tp 3627 | Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | ||
Definition | df-op 3628* |
Definition of an ordered pair, equivalent to Kuratowski's definition
{{𝐴}, {𝐴, 𝐵}} when the arguments are sets.
Since the
behavior of Kuratowski definition is not very useful for proper classes,
we define it to be empty in this case (see opprc1 3827 and opprc2 3828). For
Kuratowski's actual definition when the arguments are sets, see dfop 3804.
Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}, which has different behavior from our df-op 3628 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 3628 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses. There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition 〈𝐴, 𝐵〉2 = {{{𝐴}, ∅}, {{𝐵}}}. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition is 〈𝐴, 𝐵〉3 = {𝐴, {𝐴, 𝐵}}, but it requires the Axiom of Regularity for its justification and is not commonly used. Finally, an ordered pair of real numbers can be represented by a complex number. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | ||
Definition | df-ot 3629 | Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | ||
Theorem | sneq 3630 | Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | ||
Theorem | sneqi 3631 | Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐴} = {𝐵} | ||
Theorem | sneqd 3632 | Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴} = {𝐵}) | ||
Theorem | dfsn2 3633 | Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
⊢ {𝐴} = {𝐴, 𝐴} | ||
Theorem | elsng 3634 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | elsn 3635 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
Theorem | velsn 3636 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | ||
Theorem | elsni 3637 | There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | ||
Theorem | dfpr2 3638* | Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} | ||
Theorem | elprg 3639 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | ||
Theorem | elpr 3640 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
Theorem | elpr2 3641 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
Theorem | elpri 3642 | If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
Theorem | nelpri 3643 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} | ||
Theorem | prneli 3644 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ 𝐴 ∉ {𝐵, 𝐶} | ||
Theorem | nelprd 3645 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | ||
Theorem | eldifpr 3646 | Membership in a set with two elements removed. Similar to eldifsn 3746 and eldiftp 3665. (Contributed by Mario Carneiro, 18-Jul-2017.) |
⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) | ||
Theorem | rexdifpr 3647 | Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) |
⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) | ||
Theorem | snidg 3648 | A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | ||
Theorem | snidb 3649 | A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.) |
⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | ||
Theorem | snid 3650 | A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ {𝐴} | ||
Theorem | vsnid 3651 | A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 𝑥 ∈ {𝑥} | ||
Theorem | elsn2g 3652 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | elsn2 3653 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
Theorem | nelsn 3654 | If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) | ||
Theorem | mosn 3655* | A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3737 and snprc 3684. (Contributed by Jim Kingdon, 30-Aug-2018.) |
⊢ ∃*𝑥 𝑥 ∈ {𝐴} | ||
Theorem | ralsnsg 3656* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | ralsns 3657* | Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | rexsns 3658* | Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.) |
⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | ralsng 3659* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
Theorem | rexsng 3660* | Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
Theorem | exsnrex 3661 | There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) | ||
Theorem | ralsn 3662* | Convert a quantification over a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) | ||
Theorem | rexsn 3663* | Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) | ||
Theorem | eltpg 3664 | Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | ||
Theorem | eldiftp 3665 | Membership in a set with three elements removed. Similar to eldifsn 3746 and eldifpr 3646. (Contributed by David A. Wheeler, 22-Jul-2017.) |
⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) | ||
Theorem | eltpi 3666 | A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | ||
Theorem | eltp 3667 | A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | ||
Theorem | dftp2 3668* | Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | ||
Theorem | nfpr 3669 | Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥{𝐴, 𝐵} | ||
Theorem | ralprg 3670* | Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | rexprg 3671* | Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) | ||
Theorem | raltpg 3672* | Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
Theorem | rextpg 3673* | Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) | ||
Theorem | ralpr 3674* | Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) | ||
Theorem | rexpr 3675* | Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒)) | ||
Theorem | raltp 3676* | Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | rextp 3677* | Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃)) | ||
Theorem | sbcsng 3678* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝐴}𝜑)) | ||
Theorem | nfsn 3679 | Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝐴} | ||
Theorem | csbsng 3680 | Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) | ||
Theorem | disjsn 3681 | Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | ||
Theorem | disjsn2 3682 | Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | ||
Theorem | disjpr2 3683 | The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) |
⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅) | ||
Theorem | snprc 3684 | The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | ||
Theorem | r19.12sn 3685* | Special case of r19.12 2600 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) | ||
Theorem | rabsn 3686* | Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) | ||
Theorem | rabrsndc 3687* | A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.) |
⊢ 𝐴 ∈ V & ⊢ DECID 𝜑 ⇒ ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) | ||
Theorem | euabsn2 3688* | Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
Theorem | euabsn 3689 | Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) | ||
Theorem | reusn 3690* | A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) | ||
Theorem | absneu 3691 | Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) | ||
Theorem | rabsneu 3692 | Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) | ||
Theorem | eusn 3693* | Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.) |
⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | rabsnt 3694* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) | ||
Theorem | prcom 3695 | Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | ||
Theorem | preq1 3696 | Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | ||
Theorem | preq2 3697 | Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | ||
Theorem | preq12 3698 | Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) | ||
Theorem | preq1i 3699 | Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} | ||
Theorem | preq2i 3700 | Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |