![]() |
Intuitionistic Logic Explorer Theorem List (p. 37 of 153) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elpwid 3601 | An element of a power class is a subclass. Deduction form of elpwi 3599. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | elelpwi 3602 | If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) | ||
Theorem | nfpw 3603 | Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥𝒫 𝐴 | ||
Theorem | pwidg 3604 | Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | ||
Theorem | pwid 3605 | A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ 𝒫 𝐴 | ||
Theorem | pwss 3606* | Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) | ||
Syntax | csn 3607 | Extend class notation to include singleton. |
class {𝐴} | ||
Syntax | cpr 3608 | Extend class notation to include unordered pair. |
class {𝐴, 𝐵} | ||
Syntax | ctp 3609 | Extend class notation to include unordered triplet. |
class {𝐴, 𝐵, 𝐶} | ||
Syntax | cop 3610 | Extend class notation to include ordered pair. |
class ⟨𝐴, 𝐵⟩ | ||
Syntax | cotp 3611 | Extend class notation to include ordered triple. |
class ⟨𝐴, 𝐵, 𝐶⟩ | ||
Theorem | snjust 3612* | Soundness justification theorem for df-sn 3613. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} | ||
Definition | df-sn 3613* | Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3621. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | ||
Definition | df-pr 3614 | Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3683. For a more traditional definition, but requiring a dummy variable, see dfpr2 3626. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | ||
Definition | df-tp 3615 | Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | ||
Definition | df-op 3616* |
Definition of an ordered pair, equivalent to Kuratowski's definition
{{𝐴}, {𝐴, 𝐵}} when the arguments are sets.
Since the
behavior of Kuratowski definition is not very useful for proper classes,
we define it to be empty in this case (see opprc1 3815 and opprc2 3816). For
Kuratowski's actual definition when the arguments are sets, see dfop 3792.
Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}, which has different behavior from our df-op 3616 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 3616 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses. There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition ⟨𝐴, 𝐵⟩2 = {{{𝐴}, ∅}, {{𝐵}}}. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition is ⟨𝐴, 𝐵⟩3 = {𝐴, {𝐴, 𝐵}}, but it requires the Axiom of Regularity for its justification and is not commonly used. Finally, an ordered pair of real numbers can be represented by a complex number. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ⟨𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | ||
Definition | df-ot 3617 | Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | ||
Theorem | sneq 3618 | Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | ||
Theorem | sneqi 3619 | Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐴} = {𝐵} | ||
Theorem | sneqd 3620 | Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴} = {𝐵}) | ||
Theorem | dfsn2 3621 | Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
⊢ {𝐴} = {𝐴, 𝐴} | ||
Theorem | elsng 3622 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | elsn 3623 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
Theorem | velsn 3624 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | ||
Theorem | elsni 3625 | There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | ||
Theorem | dfpr2 3626* | Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} | ||
Theorem | elprg 3627 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | ||
Theorem | elpr 3628 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
Theorem | elpr2 3629 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
Theorem | elpri 3630 | If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
Theorem | nelpri 3631 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} | ||
Theorem | prneli 3632 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ 𝐴 ∉ {𝐵, 𝐶} | ||
Theorem | nelprd 3633 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | ||
Theorem | eldifpr 3634 | Membership in a set with two elements removed. Similar to eldifsn 3734 and eldiftp 3653. (Contributed by Mario Carneiro, 18-Jul-2017.) |
⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) | ||
Theorem | rexdifpr 3635 | Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) |
⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) | ||
Theorem | snidg 3636 | A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | ||
Theorem | snidb 3637 | A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.) |
⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | ||
Theorem | snid 3638 | A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ {𝐴} | ||
Theorem | vsnid 3639 | A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 𝑥 ∈ {𝑥} | ||
Theorem | elsn2g 3640 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | elsn2 3641 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
Theorem | nelsn 3642 | If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) | ||
Theorem | mosn 3643* | A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3725 and snprc 3672. (Contributed by Jim Kingdon, 30-Aug-2018.) |
⊢ ∃*𝑥 𝑥 ∈ {𝐴} | ||
Theorem | ralsnsg 3644* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | ralsns 3645* | Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | rexsns 3646* | Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.) |
⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | ralsng 3647* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
Theorem | rexsng 3648* | Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
Theorem | exsnrex 3649 | There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) | ||
Theorem | ralsn 3650* | Convert a quantification over a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) | ||
Theorem | rexsn 3651* | Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) | ||
Theorem | eltpg 3652 | Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | ||
Theorem | eldiftp 3653 | Membership in a set with three elements removed. Similar to eldifsn 3734 and eldifpr 3634. (Contributed by David A. Wheeler, 22-Jul-2017.) |
⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) | ||
Theorem | eltpi 3654 | A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | ||
Theorem | eltp 3655 | A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | ||
Theorem | dftp2 3656* | Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | ||
Theorem | nfpr 3657 | Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥{𝐴, 𝐵} | ||
Theorem | ralprg 3658* | Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | rexprg 3659* | Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) | ||
Theorem | raltpg 3660* | Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
Theorem | rextpg 3661* | Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) | ||
Theorem | ralpr 3662* | Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) | ||
Theorem | rexpr 3663* | Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒)) | ||
Theorem | raltp 3664* | Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | rextp 3665* | Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃)) | ||
Theorem | sbcsng 3666* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝐴}𝜑)) | ||
Theorem | nfsn 3667 | Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝐴} | ||
Theorem | csbsng 3668 | Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) | ||
Theorem | disjsn 3669 | Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | ||
Theorem | disjsn2 3670 | Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | ||
Theorem | disjpr2 3671 | The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) |
⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅) | ||
Theorem | snprc 3672 | The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | ||
Theorem | r19.12sn 3673* | Special case of r19.12 2596 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) | ||
Theorem | rabsn 3674* | Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) | ||
Theorem | rabrsndc 3675* | A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.) |
⊢ 𝐴 ∈ V & ⊢ DECID 𝜑 ⇒ ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) | ||
Theorem | euabsn2 3676* | Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
Theorem | euabsn 3677 | Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) | ||
Theorem | reusn 3678* | A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) | ||
Theorem | absneu 3679 | Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) | ||
Theorem | rabsneu 3680 | Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) | ||
Theorem | eusn 3681* | Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.) |
⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | rabsnt 3682* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) | ||
Theorem | prcom 3683 | Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | ||
Theorem | preq1 3684 | Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | ||
Theorem | preq2 3685 | Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | ||
Theorem | preq12 3686 | Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) | ||
Theorem | preq1i 3687 | Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐴, 𝐶} = {𝐵, 𝐶} | ||
Theorem | preq2i 3688 | Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} | ||
Theorem | preq12i 3689 | Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ {𝐴, 𝐶} = {𝐵, 𝐷} | ||
Theorem | preq1d 3690 | Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) | ||
Theorem | preq2d 3691 | Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵}) | ||
Theorem | preq12d 3692 | Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) | ||
Theorem | tpeq1 3693 | Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
⊢ (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷}) | ||
Theorem | tpeq2 3694 | Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) | ||
Theorem | tpeq3 3695 | Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) | ||
Theorem | tpeq1d 3696 | Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷}) | ||
Theorem | tpeq2d 3697 | Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) | ||
Theorem | tpeq3d 3698 | Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) | ||
Theorem | tpeq123d 3699 | Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐸 = 𝐹) ⇒ ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) | ||
Theorem | tprot 3700 | Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |