| Intuitionistic Logic Explorer Theorem List (p. 37 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ifordc 3601 | Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ (DECID 𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) | ||
| Theorem | ifmdc 3602 | If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
| ⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑) | ||
| Theorem | ifnetruedc 3603 | Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) | ||
| Theorem | ifnefals 3604 | Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑) | ||
| Theorem | ifnebibdc 3605 | The converse of ifbi 3582 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ ((DECID 𝜑 ∧ DECID 𝜓 ∧ 𝐴 ≠ 𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑 ↔ 𝜓))) | ||
| Syntax | cpw 3606 | Extend class notation to include power class. (The tilde in the Metamath token is meant to suggest the calligraphic font of the P.) |
| class 𝒫 𝐴 | ||
| Theorem | pwjust 3607* | Soundness justification theorem for df-pw 3608. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} | ||
| Definition | df-pw 3608* | Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | ||
| Theorem | pweq 3609 | Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | ||
| Theorem | pweqi 3610 | Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝒫 𝐴 = 𝒫 𝐵 | ||
| Theorem | pweqd 3611 | Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) | ||
| Theorem | elpw 3612 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | velpw 3613* | Setvar variable membership in a power class (common case). See elpw 3612. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | ||
| Theorem | elpwg 3614 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | elpwi 3615 | Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.) |
| ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | ||
| Theorem | elpwb 3616 | Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | elpwid 3617 | An element of a power class is a subclass. Deduction form of elpwi 3615. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | elelpwi 3618 | If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) | ||
| Theorem | nfpw 3619 | Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥𝒫 𝐴 | ||
| Theorem | pwidg 3620 | Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | ||
| Theorem | pwid 3621 | A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ 𝒫 𝐴 | ||
| Theorem | pwss 3622* | Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
| ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Syntax | csn 3623 | Extend class notation to include singleton. |
| class {𝐴} | ||
| Syntax | cpr 3624 | Extend class notation to include unordered pair. |
| class {𝐴, 𝐵} | ||
| Syntax | ctp 3625 | Extend class notation to include unordered triplet. |
| class {𝐴, 𝐵, 𝐶} | ||
| Syntax | cop 3626 | Extend class notation to include ordered pair. |
| class 〈𝐴, 𝐵〉 | ||
| Syntax | cotp 3627 | Extend class notation to include ordered triple. |
| class 〈𝐴, 𝐵, 𝐶〉 | ||
| Theorem | snjust 3628* | Soundness justification theorem for df-sn 3629. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} | ||
| Definition | df-sn 3629* | Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3637. (Contributed by NM, 5-Aug-1993.) |
| ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | ||
| Definition | df-pr 3630 | Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3699. For a more traditional definition, but requiring a dummy variable, see dfpr2 3642. (Contributed by NM, 5-Aug-1993.) |
| ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | ||
| Definition | df-tp 3631 | Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
| ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | ||
| Definition | df-op 3632* |
Definition of an ordered pair, equivalent to Kuratowski's definition
{{𝐴}, {𝐴, 𝐵}} when the arguments are sets.
Since the
behavior of Kuratowski definition is not very useful for proper classes,
we define it to be empty in this case (see opprc1 3831 and opprc2 3832). For
Kuratowski's actual definition when the arguments are sets, see dfop 3808.
Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}, which has different behavior from our df-op 3632 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 3632 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses. There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition 〈𝐴, 𝐵〉2 = {{{𝐴}, ∅}, {{𝐵}}}. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition is 〈𝐴, 𝐵〉3 = {𝐴, {𝐴, 𝐵}}, but it requires the Axiom of Regularity for its justification and is not commonly used. Finally, an ordered pair of real numbers can be represented by a complex number. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | ||
| Definition | df-ot 3633 | Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
| ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | ||
| Theorem | sneq 3634 | Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | ||
| Theorem | sneqi 3635 | Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝐴} = {𝐵} | ||
| Theorem | sneqd 3636 | Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝐴} = {𝐵}) | ||
| Theorem | dfsn2 3637 | Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| ⊢ {𝐴} = {𝐴, 𝐴} | ||
| Theorem | elsng 3638 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | elsn 3639 | There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
| Theorem | velsn 3640 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | ||
| Theorem | elsni 3641 | There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | ||
| Theorem | dfpr2 3642* | Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} | ||
| Theorem | elprg 3643 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | ||
| Theorem | elpr 3644 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
| Theorem | elpr2 3645 | A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
| Theorem | elpri 3646 | If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
| ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | ||
| Theorem | nelpri 3647 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
| ⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} | ||
| Theorem | prneli 3648 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
| ⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ 𝐴 ∉ {𝐵, 𝐶} | ||
| Theorem | nelprd 3649 | If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | ||
| Theorem | eldifpr 3650 | Membership in a set with two elements removed. Similar to eldifsn 3750 and eldiftp 3669. (Contributed by Mario Carneiro, 18-Jul-2017.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) | ||
| Theorem | rexdifpr 3651 | Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) |
| ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) | ||
| Theorem | snidg 3652 | A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | ||
| Theorem | snidb 3653 | A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | ||
| Theorem | snid 3654 | A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ {𝐴} | ||
| Theorem | vsnid 3655 | A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 𝑥 ∈ {𝑥} | ||
| Theorem | elsn2g 3656 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | elsn2 3657 | There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) | ||
| Theorem | nelsn 3658 | If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) | ||
| Theorem | mosn 3659* | A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3741 and snprc 3688. (Contributed by Jim Kingdon, 30-Aug-2018.) |
| ⊢ ∃*𝑥 𝑥 ∈ {𝐴} | ||
| Theorem | ralsnsg 3660* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | ralsns 3661* | Substitution expressed in terms of quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | rexsns 3662* | Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.) |
| ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | ralsng 3663* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
| Theorem | rexsng 3664* | Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
| Theorem | exsnrex 3665 | There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
| ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) | ||
| Theorem | ralsn 3666* | Convert a quantification over a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) | ||
| Theorem | rexsn 3667* | Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) | ||
| Theorem | eltpg 3668 | Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | ||
| Theorem | eldiftp 3669 | Membership in a set with three elements removed. Similar to eldifsn 3750 and eldifpr 3650. (Contributed by David A. Wheeler, 22-Jul-2017.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) | ||
| Theorem | eltpi 3670 | A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | ||
| Theorem | eltp 3671 | A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) | ||
| Theorem | dftp2 3672* | Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
| ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | ||
| Theorem | nfpr 3673 | Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥{𝐴, 𝐵} | ||
| Theorem | ralprg 3674* | Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
| Theorem | rexprg 3675* | Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) | ||
| Theorem | raltpg 3676* | Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
| Theorem | rextpg 3677* | Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) | ||
| Theorem | ralpr 3678* | Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) | ||
| Theorem | rexpr 3679* | Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒)) | ||
| Theorem | raltp 3680* | Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | rextp 3681* | Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃)) | ||
| Theorem | sbcsng 3682* | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝐴}𝜑)) | ||
| Theorem | nfsn 3683 | Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝐴} | ||
| Theorem | csbsng 3684 | Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) | ||
| Theorem | disjsn 3685 | Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
| ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | ||
| Theorem | disjsn2 3686 | Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
| ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | ||
| Theorem | disjpr2 3687 | The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) |
| ⊢ (((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅) | ||
| Theorem | snprc 3688 | The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | ||
| Theorem | r19.12sn 3689* | Special case of r19.12 2603 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) | ||
| Theorem | rabsn 3690* | Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
| ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) | ||
| Theorem | rabrsndc 3691* | A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.) |
| ⊢ 𝐴 ∈ V & ⊢ DECID 𝜑 ⇒ ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) | ||
| Theorem | euabsn2 3692* | Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | euabsn 3693 | Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.) |
| ⊢ (∃!𝑥𝜑 ↔ ∃𝑥{𝑥 ∣ 𝜑} = {𝑥}) | ||
| Theorem | reusn 3694* | A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦{𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦}) | ||
| Theorem | absneu 3695 | Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) | ||
| Theorem | rabsneu 3696 | Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | eusn 3697* | Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.) |
| ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | rabsnt 3698* | Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝐵} → 𝜓) | ||
| Theorem | prcom 3699 | Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | ||
| Theorem | preq1 3700 | Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
| ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |