ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn GIF version

Theorem fnressn 5560
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem fnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3504 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21reseq2d 4777 . . . . 5 (𝑥 = 𝐵 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
3 fveq2 5375 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4 opeq12 3673 . . . . . . 7 ((𝑥 = 𝐵 ∧ (𝐹𝑥) = (𝐹𝐵)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
53, 4mpdan 415 . . . . . 6 (𝑥 = 𝐵 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
65sneqd 3506 . . . . 5 (𝑥 = 𝐵 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝐵, (𝐹𝐵)⟩})
72, 6eqeq12d 2129 . . . 4 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} ↔ (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
87imbi2d 229 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}) ↔ (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})))
9 vex 2660 . . . . . . 7 𝑥 ∈ V
109snss 3615 . . . . . 6 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
11 fnssres 5194 . . . . . 6 ((𝐹 Fn 𝐴 ∧ {𝑥} ⊆ 𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
1210, 11sylan2b 283 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
13 dffn2 5232 . . . . . . 7 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}):{𝑥}⟶V)
149fsn2 5548 . . . . . . 7 ((𝐹 ↾ {𝑥}):{𝑥}⟶V ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
1513, 14bitri 183 . . . . . 6 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
16 vsnid 3523 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
17 fvres 5399 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1816, 17ax-mp 7 . . . . . . . . . 10 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
1918opeq2i 3675 . . . . . . . . 9 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
2019sneqi 3505 . . . . . . . 8 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
2120eqeq2i 2125 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
22 snssi 3630 . . . . . . . . . 10 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
2322, 11sylan2 282 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
24 funfvex 5392 . . . . . . . . . 10 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom (𝐹 ↾ {𝑥})) → ((𝐹 ↾ {𝑥})‘𝑥) ∈ V)
2524funfni 5181 . . . . . . . . 9 (((𝐹 ↾ {𝑥}) Fn {𝑥} ∧ 𝑥 ∈ {𝑥}) → ((𝐹 ↾ {𝑥})‘𝑥) ∈ V)
2623, 16, 25sylancl 407 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥})‘𝑥) ∈ V)
2726biantrurd 301 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩})))
2821, 27syl5rbbr 194 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ((((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
2915, 28syl5bb 191 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
3012, 29mpbid 146 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
3130expcom 115 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
328, 31vtoclga 2723 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
3332impcom 124 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  Vcvv 2657  wss 3037  {csn 3493  cop 3496  cres 4501   Fn wfn 5076  wf 5077  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089
This theorem is referenced by:  fressnfv  5561  fnsnsplitss  5573  fnsnsplitdc  6355  dif1en  6726  fnfi  6777  fseq1p1m1  9767  resunimafz0  10467
  Copyright terms: Public domain W3C validator