| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strle1g | GIF version | ||
| Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ | 
| strle1.a | ⊢ 𝐴 = 𝐼 | 
| Ref | Expression | 
|---|---|
| strle1g | ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strle1.i | . . . 4 ⊢ 𝐼 ∈ ℕ | |
| 2 | 1 | nnrei 8999 | . . . . 5 ⊢ 𝐼 ∈ ℝ | 
| 3 | 2 | leidi 8512 | . . . 4 ⊢ 𝐼 ≤ 𝐼 | 
| 4 | 1, 1, 3 | 3pm3.2i 1177 | . . 3 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) | 
| 5 | 4 | a1i 9 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼)) | 
| 6 | difss 3289 | . . 3 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
| 7 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
| 8 | 7, 1 | eqeltri 2269 | . . . 4 ⊢ 𝐴 ∈ ℕ | 
| 9 | funsng 5304 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → Fun {〈𝐴, 𝑋〉}) | |
| 10 | 8, 9 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → Fun {〈𝐴, 𝑋〉}) | 
| 11 | funss 5277 | . . 3 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
| 12 | 6, 10, 11 | mpsyl 65 | . 2 ⊢ (𝑋 ∈ 𝑉 → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) | 
| 13 | opexg 4261 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → 〈𝐴, 𝑋〉 ∈ V) | |
| 14 | 8, 13 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 〈𝐴, 𝑋〉 ∈ V) | 
| 15 | snexg 4217 | . . 3 ⊢ (〈𝐴, 𝑋〉 ∈ V → {〈𝐴, 𝑋〉} ∈ V) | |
| 16 | 14, 15 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} ∈ V) | 
| 17 | dmsnopg 5141 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = {𝐴}) | |
| 18 | 7 | sneqi 3634 | . . . . 5 ⊢ {𝐴} = {𝐼} | 
| 19 | 1 | nnzi 9347 | . . . . . 6 ⊢ 𝐼 ∈ ℤ | 
| 20 | fzsn 10141 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (𝐼...𝐼) = {𝐼} | 
| 22 | 18, 21 | eqtr4i 2220 | . . . 4 ⊢ {𝐴} = (𝐼...𝐼) | 
| 23 | 17, 22 | eqtrdi 2245 | . . 3 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = (𝐼...𝐼)) | 
| 24 | eqimss 3237 | . . 3 ⊢ (dom {〈𝐴, 𝑋〉} = (𝐼...𝐼) → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) | |
| 25 | 23, 24 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) | 
| 26 | isstructr 12693 | . 2 ⊢ (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ {〈𝐴, 𝑋〉} ∈ V ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | |
| 27 | 5, 12, 16, 25, 26 | syl13anc 1251 | 1 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ⊆ wss 3157 ∅c0 3450 {csn 3622 〈cop 3625 class class class wbr 4033 dom cdm 4663 Fun wfun 5252 (class class class)co 5922 ≤ cle 8062 ℕcn 8990 ℤcz 9326 ...cfz 10083 Struct cstr 12674 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 | 
| This theorem is referenced by: strle2g 12785 strle3g 12786 1strstrg 12794 srngstrd 12823 lmodstrd 12841 cnfldstr 14114 | 
| Copyright terms: Public domain | W3C validator |