| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strle1g | GIF version | ||
| Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ |
| strle1.a | ⊢ 𝐴 = 𝐼 |
| Ref | Expression |
|---|---|
| strle1g | ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strle1.i | . . . 4 ⊢ 𝐼 ∈ ℕ | |
| 2 | 1 | nnrei 9107 | . . . . 5 ⊢ 𝐼 ∈ ℝ |
| 3 | 2 | leidi 8620 | . . . 4 ⊢ 𝐼 ≤ 𝐼 |
| 4 | 1, 1, 3 | 3pm3.2i 1199 | . . 3 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
| 5 | 4 | a1i 9 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼)) |
| 6 | difss 3330 | . . 3 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
| 7 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
| 8 | 7, 1 | eqeltri 2302 | . . . 4 ⊢ 𝐴 ∈ ℕ |
| 9 | funsng 5363 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → Fun {〈𝐴, 𝑋〉}) | |
| 10 | 8, 9 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → Fun {〈𝐴, 𝑋〉}) |
| 11 | funss 5333 | . . 3 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
| 12 | 6, 10, 11 | mpsyl 65 | . 2 ⊢ (𝑋 ∈ 𝑉 → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 13 | opexg 4313 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → 〈𝐴, 𝑋〉 ∈ V) | |
| 14 | 8, 13 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 〈𝐴, 𝑋〉 ∈ V) |
| 15 | snexg 4267 | . . 3 ⊢ (〈𝐴, 𝑋〉 ∈ V → {〈𝐴, 𝑋〉} ∈ V) | |
| 16 | 14, 15 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} ∈ V) |
| 17 | dmsnopg 5196 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = {𝐴}) | |
| 18 | 7 | sneqi 3678 | . . . . 5 ⊢ {𝐴} = {𝐼} |
| 19 | 1 | nnzi 9455 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
| 20 | fzsn 10250 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (𝐼...𝐼) = {𝐼} |
| 22 | 18, 21 | eqtr4i 2253 | . . . 4 ⊢ {𝐴} = (𝐼...𝐼) |
| 23 | 17, 22 | eqtrdi 2278 | . . 3 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = (𝐼...𝐼)) |
| 24 | eqimss 3278 | . . 3 ⊢ (dom {〈𝐴, 𝑋〉} = (𝐼...𝐼) → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) | |
| 25 | 23, 24 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) |
| 26 | isstructr 13033 | . 2 ⊢ (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ {〈𝐴, 𝑋〉} ∈ V ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | |
| 27 | 5, 12, 16, 25, 26 | syl13anc 1273 | 1 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ⊆ wss 3197 ∅c0 3491 {csn 3666 〈cop 3669 class class class wbr 4082 dom cdm 4716 Fun wfun 5308 (class class class)co 5994 ≤ cle 8170 ℕcn 9098 ℤcz 9434 ...cfz 10192 Struct cstr 13014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-z 9435 df-uz 9711 df-fz 10193 df-struct 13020 |
| This theorem is referenced by: strle2g 13126 strle3g 13127 1strstrg 13135 srngstrd 13165 lmodstrd 13183 cnfldstr 14507 |
| Copyright terms: Public domain | W3C validator |