ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g GIF version

Theorem strle1g 13125
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i 𝐼 ∈ ℕ
strle1.a 𝐴 = 𝐼
Assertion
Ref Expression
strle1g (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4 𝐼 ∈ ℕ
21nnrei 9107 . . . . 5 𝐼 ∈ ℝ
32leidi 8620 . . . 4 𝐼𝐼
41, 1, 33pm3.2i 1199 . . 3 (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼)
54a1i 9 . 2 (𝑋𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼))
6 difss 3330 . . 3 ({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩}
7 strle1.a . . . . 5 𝐴 = 𝐼
87, 1eqeltri 2302 . . . 4 𝐴 ∈ ℕ
9 funsng 5363 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑋𝑉) → Fun {⟨𝐴, 𝑋⟩})
108, 9mpan 424 . . 3 (𝑋𝑉 → Fun {⟨𝐴, 𝑋⟩})
11 funss 5333 . . 3 (({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} → (Fun {⟨𝐴, 𝑋⟩} → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})))
126, 10, 11mpsyl 65 . 2 (𝑋𝑉 → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}))
13 opexg 4313 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑋𝑉) → ⟨𝐴, 𝑋⟩ ∈ V)
148, 13mpan 424 . . 3 (𝑋𝑉 → ⟨𝐴, 𝑋⟩ ∈ V)
15 snexg 4267 . . 3 (⟨𝐴, 𝑋⟩ ∈ V → {⟨𝐴, 𝑋⟩} ∈ V)
1614, 15syl 14 . 2 (𝑋𝑉 → {⟨𝐴, 𝑋⟩} ∈ V)
17 dmsnopg 5196 . . . 4 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} = {𝐴})
187sneqi 3678 . . . . 5 {𝐴} = {𝐼}
191nnzi 9455 . . . . . 6 𝐼 ∈ ℤ
20 fzsn 10250 . . . . . 6 (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼})
2119, 20ax-mp 5 . . . . 5 (𝐼...𝐼) = {𝐼}
2218, 21eqtr4i 2253 . . . 4 {𝐴} = (𝐼...𝐼)
2317, 22eqtrdi 2278 . . 3 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} = (𝐼...𝐼))
24 eqimss 3278 . . 3 (dom {⟨𝐴, 𝑋⟩} = (𝐼...𝐼) → dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))
2523, 24syl 14 . 2 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))
26 isstructr 13033 . 2 (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼) ∧ (Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ∧ {⟨𝐴, 𝑋⟩} ∈ V ∧ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))) → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
275, 12, 16, 25, 26syl13anc 1273 1 (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  wss 3197  c0 3491  {csn 3666  cop 3669   class class class wbr 4082  dom cdm 4716  Fun wfun 5308  (class class class)co 5994  cle 8170  cn 9098  cz 9434  ...cfz 10192   Struct cstr 13014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-z 9435  df-uz 9711  df-fz 10193  df-struct 13020
This theorem is referenced by:  strle2g  13126  strle3g  13127  1strstrg  13135  srngstrd  13165  lmodstrd  13183  cnfldstr  14507
  Copyright terms: Public domain W3C validator