ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g GIF version

Theorem strle1g 12447
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i 𝐼 ∈ ℕ
strle1.a 𝐴 = 𝐼
Assertion
Ref Expression
strle1g (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4 𝐼 ∈ ℕ
21nnrei 8858 . . . . 5 𝐼 ∈ ℝ
32leidi 8375 . . . 4 𝐼𝐼
41, 1, 33pm3.2i 1164 . . 3 (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼)
54a1i 9 . 2 (𝑋𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼))
6 difss 3244 . . 3 ({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩}
7 strle1.a . . . . 5 𝐴 = 𝐼
87, 1eqeltri 2237 . . . 4 𝐴 ∈ ℕ
9 funsng 5229 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑋𝑉) → Fun {⟨𝐴, 𝑋⟩})
108, 9mpan 421 . . 3 (𝑋𝑉 → Fun {⟨𝐴, 𝑋⟩})
11 funss 5202 . . 3 (({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} → (Fun {⟨𝐴, 𝑋⟩} → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})))
126, 10, 11mpsyl 65 . 2 (𝑋𝑉 → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}))
13 opexg 4201 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑋𝑉) → ⟨𝐴, 𝑋⟩ ∈ V)
148, 13mpan 421 . . 3 (𝑋𝑉 → ⟨𝐴, 𝑋⟩ ∈ V)
15 snexg 4158 . . 3 (⟨𝐴, 𝑋⟩ ∈ V → {⟨𝐴, 𝑋⟩} ∈ V)
1614, 15syl 14 . 2 (𝑋𝑉 → {⟨𝐴, 𝑋⟩} ∈ V)
17 dmsnopg 5070 . . . 4 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} = {𝐴})
187sneqi 3583 . . . . 5 {𝐴} = {𝐼}
191nnzi 9204 . . . . . 6 𝐼 ∈ ℤ
20 fzsn 9992 . . . . . 6 (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼})
2119, 20ax-mp 5 . . . . 5 (𝐼...𝐼) = {𝐼}
2218, 21eqtr4i 2188 . . . 4 {𝐴} = (𝐼...𝐼)
2317, 22eqtrdi 2213 . . 3 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} = (𝐼...𝐼))
24 eqimss 3192 . . 3 (dom {⟨𝐴, 𝑋⟩} = (𝐼...𝐼) → dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))
2523, 24syl 14 . 2 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))
26 isstructr 12372 . 2 (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼) ∧ (Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ∧ {⟨𝐴, 𝑋⟩} ∈ V ∧ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))) → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
275, 12, 16, 25, 26syl13anc 1229 1 (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 967   = wceq 1342  wcel 2135  Vcvv 2722  cdif 3109  wss 3112  c0 3405  {csn 3571  cop 3574   class class class wbr 3977  dom cdm 4599  Fun wfun 5177  (class class class)co 5837  cle 7926  cn 8849  cz 9183  ...cfz 9936   Struct cstr 12353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-z 9184  df-uz 9459  df-fz 9937  df-struct 12359
This theorem is referenced by:  strle2g  12448  strle3g  12449  1strstrg  12455  srngstrd  12479  lmodstrd  12490
  Copyright terms: Public domain W3C validator