| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strle1g | GIF version | ||
| Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
| Ref | Expression |
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ |
| strle1.a | ⊢ 𝐴 = 𝐼 |
| Ref | Expression |
|---|---|
| strle1g | ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strle1.i | . . . 4 ⊢ 𝐼 ∈ ℕ | |
| 2 | 1 | nnrei 9016 | . . . . 5 ⊢ 𝐼 ∈ ℝ |
| 3 | 2 | leidi 8529 | . . . 4 ⊢ 𝐼 ≤ 𝐼 |
| 4 | 1, 1, 3 | 3pm3.2i 1177 | . . 3 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
| 5 | 4 | a1i 9 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼)) |
| 6 | difss 3290 | . . 3 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
| 7 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
| 8 | 7, 1 | eqeltri 2269 | . . . 4 ⊢ 𝐴 ∈ ℕ |
| 9 | funsng 5305 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → Fun {〈𝐴, 𝑋〉}) | |
| 10 | 8, 9 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → Fun {〈𝐴, 𝑋〉}) |
| 11 | funss 5278 | . . 3 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
| 12 | 6, 10, 11 | mpsyl 65 | . 2 ⊢ (𝑋 ∈ 𝑉 → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 13 | opexg 4262 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → 〈𝐴, 𝑋〉 ∈ V) | |
| 14 | 8, 13 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 〈𝐴, 𝑋〉 ∈ V) |
| 15 | snexg 4218 | . . 3 ⊢ (〈𝐴, 𝑋〉 ∈ V → {〈𝐴, 𝑋〉} ∈ V) | |
| 16 | 14, 15 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} ∈ V) |
| 17 | dmsnopg 5142 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = {𝐴}) | |
| 18 | 7 | sneqi 3635 | . . . . 5 ⊢ {𝐴} = {𝐼} |
| 19 | 1 | nnzi 9364 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
| 20 | fzsn 10158 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (𝐼...𝐼) = {𝐼} |
| 22 | 18, 21 | eqtr4i 2220 | . . . 4 ⊢ {𝐴} = (𝐼...𝐼) |
| 23 | 17, 22 | eqtrdi 2245 | . . 3 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = (𝐼...𝐼)) |
| 24 | eqimss 3238 | . . 3 ⊢ (dom {〈𝐴, 𝑋〉} = (𝐼...𝐼) → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) | |
| 25 | 23, 24 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) |
| 26 | isstructr 12718 | . 2 ⊢ (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ {〈𝐴, 𝑋〉} ∈ V ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | |
| 27 | 5, 12, 16, 25, 26 | syl13anc 1251 | 1 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ⊆ wss 3157 ∅c0 3451 {csn 3623 〈cop 3626 class class class wbr 4034 dom cdm 4664 Fun wfun 5253 (class class class)co 5925 ≤ cle 8079 ℕcn 9007 ℤcz 9343 ...cfz 10100 Struct cstr 12699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 df-uz 9619 df-fz 10101 df-struct 12705 |
| This theorem is referenced by: strle2g 12810 strle3g 12811 1strstrg 12819 srngstrd 12848 lmodstrd 12866 cnfldstr 14190 |
| Copyright terms: Public domain | W3C validator |