![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strle1g | GIF version |
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
Ref | Expression |
---|---|
strle1g | ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strle1.i | . . . 4 ⊢ 𝐼 ∈ ℕ | |
2 | 1 | nnrei 8991 | . . . . 5 ⊢ 𝐼 ∈ ℝ |
3 | 2 | leidi 8504 | . . . 4 ⊢ 𝐼 ≤ 𝐼 |
4 | 1, 1, 3 | 3pm3.2i 1177 | . . 3 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
5 | 4 | a1i 9 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼)) |
6 | difss 3285 | . . 3 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
7 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
8 | 7, 1 | eqeltri 2266 | . . . 4 ⊢ 𝐴 ∈ ℕ |
9 | funsng 5300 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → Fun {〈𝐴, 𝑋〉}) | |
10 | 8, 9 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → Fun {〈𝐴, 𝑋〉}) |
11 | funss 5273 | . . 3 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
12 | 6, 10, 11 | mpsyl 65 | . 2 ⊢ (𝑋 ∈ 𝑉 → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
13 | opexg 4257 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ 𝑉) → 〈𝐴, 𝑋〉 ∈ V) | |
14 | 8, 13 | mpan 424 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 〈𝐴, 𝑋〉 ∈ V) |
15 | snexg 4213 | . . 3 ⊢ (〈𝐴, 𝑋〉 ∈ V → {〈𝐴, 𝑋〉} ∈ V) | |
16 | 14, 15 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} ∈ V) |
17 | dmsnopg 5137 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = {𝐴}) | |
18 | 7 | sneqi 3630 | . . . . 5 ⊢ {𝐴} = {𝐼} |
19 | 1 | nnzi 9338 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
20 | fzsn 10132 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (𝐼...𝐼) = {𝐼} |
22 | 18, 21 | eqtr4i 2217 | . . . 4 ⊢ {𝐴} = (𝐼...𝐼) |
23 | 17, 22 | eqtrdi 2242 | . . 3 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} = (𝐼...𝐼)) |
24 | eqimss 3233 | . . 3 ⊢ (dom {〈𝐴, 𝑋〉} = (𝐼...𝐼) → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) | |
25 | 23, 24 | syl 14 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼)) |
26 | isstructr 12633 | . 2 ⊢ (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ {〈𝐴, 𝑋〉} ∈ V ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | |
27 | 5, 12, 16, 25, 26 | syl13anc 1251 | 1 ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ⊆ wss 3153 ∅c0 3446 {csn 3618 〈cop 3621 class class class wbr 4029 dom cdm 4659 Fun wfun 5248 (class class class)co 5918 ≤ cle 8055 ℕcn 8982 ℤcz 9317 ...cfz 10074 Struct cstr 12614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 df-uz 9593 df-fz 10075 df-struct 12620 |
This theorem is referenced by: strle2g 12725 strle3g 12726 1strstrg 12734 srngstrd 12763 lmodstrd 12781 |
Copyright terms: Public domain | W3C validator |