ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g GIF version

Theorem strle1g 12982
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i 𝐼 ∈ ℕ
strle1.a 𝐴 = 𝐼
Assertion
Ref Expression
strle1g (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4 𝐼 ∈ ℕ
21nnrei 9052 . . . . 5 𝐼 ∈ ℝ
32leidi 8565 . . . 4 𝐼𝐼
41, 1, 33pm3.2i 1178 . . 3 (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼)
54a1i 9 . 2 (𝑋𝑉 → (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼))
6 difss 3300 . . 3 ({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩}
7 strle1.a . . . . 5 𝐴 = 𝐼
87, 1eqeltri 2279 . . . 4 𝐴 ∈ ℕ
9 funsng 5325 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑋𝑉) → Fun {⟨𝐴, 𝑋⟩})
108, 9mpan 424 . . 3 (𝑋𝑉 → Fun {⟨𝐴, 𝑋⟩})
11 funss 5295 . . 3 (({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} → (Fun {⟨𝐴, 𝑋⟩} → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})))
126, 10, 11mpsyl 65 . 2 (𝑋𝑉 → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}))
13 opexg 4276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑋𝑉) → ⟨𝐴, 𝑋⟩ ∈ V)
148, 13mpan 424 . . 3 (𝑋𝑉 → ⟨𝐴, 𝑋⟩ ∈ V)
15 snexg 4232 . . 3 (⟨𝐴, 𝑋⟩ ∈ V → {⟨𝐴, 𝑋⟩} ∈ V)
1614, 15syl 14 . 2 (𝑋𝑉 → {⟨𝐴, 𝑋⟩} ∈ V)
17 dmsnopg 5159 . . . 4 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} = {𝐴})
187sneqi 3646 . . . . 5 {𝐴} = {𝐼}
191nnzi 9400 . . . . . 6 𝐼 ∈ ℤ
20 fzsn 10195 . . . . . 6 (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼})
2119, 20ax-mp 5 . . . . 5 (𝐼...𝐼) = {𝐼}
2218, 21eqtr4i 2230 . . . 4 {𝐴} = (𝐼...𝐼)
2317, 22eqtrdi 2255 . . 3 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} = (𝐼...𝐼))
24 eqimss 3248 . . 3 (dom {⟨𝐴, 𝑋⟩} = (𝐼...𝐼) → dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))
2523, 24syl 14 . 2 (𝑋𝑉 → dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))
26 isstructr 12891 . 2 (((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝐼) ∧ (Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ∧ {⟨𝐴, 𝑋⟩} ∈ V ∧ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))) → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
275, 12, 16, 25, 26syl13anc 1252 1 (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  cdif 3164  wss 3167  c0 3461  {csn 3634  cop 3637   class class class wbr 4047  dom cdm 4679  Fun wfun 5270  (class class class)co 5951  cle 8115  cn 9043  cz 9379  ...cfz 10137   Struct cstr 12872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-z 9380  df-uz 9656  df-fz 10138  df-struct 12878
This theorem is referenced by:  strle2g  12983  strle3g  12984  1strstrg  12992  srngstrd  13022  lmodstrd  13040  cnfldstr  14364
  Copyright terms: Public domain W3C validator