| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | GIF version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sneq 3649 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-sn 3644 |
| This theorem is referenced by: dmsnsnsng 5174 cnvsng 5182 ressn 5237 f1osng 5581 fsng 5771 funopsn 5780 fnressn 5788 fvsng 5798 2nd1st 6284 dfmpo 6327 cnvf1olem 6328 tpostpos 6368 tfrlemi1 6436 tfr1onlemaccex 6452 tfrcllemaccex 6465 elixpsn 6840 ixpsnf1o 6841 en1bg 6910 mapsnen 6922 xpassen 6945 fztp 10230 fzsuc2 10231 fseq1p1m1 10246 fseq1m1p1 10247 zfz1isolemsplit 11015 zfz1isolem1 11017 s1val 11104 s1eq 11106 s1prc 11110 fsumm1 11812 fprodm1 11994 divalgmod 12323 ennnfonelemg 12859 ennnfonelemp1 12862 ennnfonelem1 12863 ennnfonelemnn0 12878 setsvalg 12947 strsetsid 12950 imasex 13222 imasival 13223 imasaddvallemg 13232 mulgval 13543 isunitd 13953 lspsnneg 14267 lspsnsub 14268 lmodindp1 14275 lidl0 14336 rsp0 14340 ridl0 14357 zrhrhmb 14469 znval 14483 psrval 14513 txdis 14834 |
| Copyright terms: Public domain | W3C validator |