![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneqd | GIF version |
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sneq 3630 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {csn 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-sn 3625 |
This theorem is referenced by: dmsnsnsng 5144 cnvsng 5152 ressn 5207 f1osng 5542 fsng 5732 fnressn 5745 fvsng 5755 2nd1st 6235 dfmpo 6278 cnvf1olem 6279 tpostpos 6319 tfrlemi1 6387 tfr1onlemaccex 6403 tfrcllemaccex 6416 elixpsn 6791 ixpsnf1o 6792 en1bg 6856 mapsnen 6867 xpassen 6886 fztp 10147 fzsuc2 10148 fseq1p1m1 10163 fseq1m1p1 10164 zfz1isolemsplit 10912 zfz1isolem1 10914 fsumm1 11562 fprodm1 11744 divalgmod 12071 ennnfonelemg 12563 ennnfonelemp1 12566 ennnfonelem1 12567 ennnfonelemnn0 12582 setsvalg 12651 strsetsid 12654 imasex 12891 imasival 12892 imasaddvallemg 12901 mulgval 13195 isunitd 13605 lspsnneg 13919 lspsnsub 13920 lmodindp1 13927 lidl0 13988 rsp0 13992 ridl0 14009 zrhrhmb 14121 znval 14135 psrval 14163 txdis 14456 |
Copyright terms: Public domain | W3C validator |