| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | GIF version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sneq 3643 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-sn 3638 |
| This theorem is referenced by: dmsnsnsng 5159 cnvsng 5167 ressn 5222 f1osng 5562 fsng 5752 funopsn 5761 fnressn 5769 fvsng 5779 2nd1st 6265 dfmpo 6308 cnvf1olem 6309 tpostpos 6349 tfrlemi1 6417 tfr1onlemaccex 6433 tfrcllemaccex 6446 elixpsn 6821 ixpsnf1o 6822 en1bg 6891 mapsnen 6902 xpassen 6924 fztp 10199 fzsuc2 10200 fseq1p1m1 10215 fseq1m1p1 10216 zfz1isolemsplit 10981 zfz1isolem1 10983 s1val 11069 s1eq 11071 s1prc 11075 fsumm1 11698 fprodm1 11880 divalgmod 12209 ennnfonelemg 12745 ennnfonelemp1 12748 ennnfonelem1 12749 ennnfonelemnn0 12764 setsvalg 12833 strsetsid 12836 imasex 13108 imasival 13109 imasaddvallemg 13118 mulgval 13429 isunitd 13839 lspsnneg 14153 lspsnsub 14154 lmodindp1 14161 lidl0 14222 rsp0 14226 ridl0 14243 zrhrhmb 14355 znval 14369 psrval 14399 txdis 14720 |
| Copyright terms: Public domain | W3C validator |