| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | GIF version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sneq 3677 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-sn 3672 |
| This theorem is referenced by: dmsnsnsng 5205 cnvsng 5213 ressn 5268 f1osng 5613 fsng 5807 funopsn 5816 fnressn 5824 fvsng 5834 2nd1st 6324 dfmpo 6367 cnvf1olem 6368 tpostpos 6408 tfrlemi1 6476 tfr1onlemaccex 6492 tfrcllemaccex 6505 elixpsn 6880 ixpsnf1o 6881 en1bg 6950 mapsnen 6962 xpassen 6985 fztp 10270 fzsuc2 10271 fseq1p1m1 10286 fseq1m1p1 10287 zfz1isolemsplit 11055 zfz1isolem1 11057 s1val 11145 s1eq 11147 s1prc 11151 fsumm1 11922 fprodm1 12104 divalgmod 12433 ennnfonelemg 12969 ennnfonelemp1 12972 ennnfonelem1 12973 ennnfonelemnn0 12988 setsvalg 13057 strsetsid 13060 imasex 13333 imasival 13334 imasaddvallemg 13343 mulgval 13654 isunitd 14064 lspsnneg 14378 lspsnsub 14379 lmodindp1 14386 lidl0 14447 rsp0 14451 ridl0 14468 zrhrhmb 14580 znval 14594 psrval 14624 txdis 14945 wkslem1 16026 wkslem2 16027 iswlk 16029 |
| Copyright terms: Public domain | W3C validator |