| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | GIF version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sneq 3634 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-sn 3629 |
| This theorem is referenced by: dmsnsnsng 5148 cnvsng 5156 ressn 5211 f1osng 5548 fsng 5738 fnressn 5751 fvsng 5761 2nd1st 6247 dfmpo 6290 cnvf1olem 6291 tpostpos 6331 tfrlemi1 6399 tfr1onlemaccex 6415 tfrcllemaccex 6428 elixpsn 6803 ixpsnf1o 6804 en1bg 6868 mapsnen 6879 xpassen 6898 fztp 10172 fzsuc2 10173 fseq1p1m1 10188 fseq1m1p1 10189 zfz1isolemsplit 10949 zfz1isolem1 10951 fsumm1 11600 fprodm1 11782 divalgmod 12111 ennnfonelemg 12647 ennnfonelemp1 12650 ennnfonelem1 12651 ennnfonelemnn0 12666 setsvalg 12735 strsetsid 12738 imasex 13009 imasival 13010 imasaddvallemg 13019 mulgval 13330 isunitd 13740 lspsnneg 14054 lspsnsub 14055 lmodindp1 14062 lidl0 14123 rsp0 14127 ridl0 14144 zrhrhmb 14256 znval 14270 psrval 14300 txdis 14621 |
| Copyright terms: Public domain | W3C validator |