![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneqd | GIF version |
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sneq 3629 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-sn 3624 |
This theorem is referenced by: dmsnsnsng 5143 cnvsng 5151 ressn 5206 f1osng 5541 fsng 5731 fnressn 5744 fvsng 5754 2nd1st 6233 dfmpo 6276 cnvf1olem 6277 tpostpos 6317 tfrlemi1 6385 tfr1onlemaccex 6401 tfrcllemaccex 6414 elixpsn 6789 ixpsnf1o 6790 en1bg 6854 mapsnen 6865 xpassen 6884 fztp 10144 fzsuc2 10145 fseq1p1m1 10160 fseq1m1p1 10161 zfz1isolemsplit 10909 zfz1isolem1 10911 fsumm1 11559 fprodm1 11741 divalgmod 12068 ennnfonelemg 12560 ennnfonelemp1 12563 ennnfonelem1 12564 ennnfonelemnn0 12579 setsvalg 12648 strsetsid 12651 imasex 12888 imasival 12889 imasaddvallemg 12898 mulgval 13192 isunitd 13602 lspsnneg 13916 lspsnsub 13917 lmodindp1 13924 lidl0 13985 rsp0 13989 ridl0 14006 zrhrhmb 14110 znval 14124 psrval 14152 txdis 14445 |
Copyright terms: Public domain | W3C validator |