Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneqd | GIF version |
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sneq 3587 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-sn 3582 |
This theorem is referenced by: dmsnsnsng 5081 cnvsng 5089 ressn 5144 f1osng 5473 fsng 5658 fnressn 5671 fvsng 5681 2nd1st 6148 dfmpo 6191 cnvf1olem 6192 tpostpos 6232 tfrlemi1 6300 tfr1onlemaccex 6316 tfrcllemaccex 6329 elixpsn 6701 ixpsnf1o 6702 en1bg 6766 mapsnen 6777 xpassen 6796 fztp 10013 fzsuc2 10014 fseq1p1m1 10029 fseq1m1p1 10030 zfz1isolemsplit 10751 zfz1isolem1 10753 fsumm1 11357 fprodm1 11539 divalgmod 11864 ennnfonelemg 12336 ennnfonelemp1 12339 ennnfonelem1 12340 ennnfonelemnn0 12355 setsvalg 12424 strsetsid 12427 txdis 12917 |
Copyright terms: Public domain | W3C validator |