Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneqd | GIF version |
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sneq 3594 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-sn 3589 |
This theorem is referenced by: dmsnsnsng 5088 cnvsng 5096 ressn 5151 f1osng 5483 fsng 5669 fnressn 5682 fvsng 5692 2nd1st 6159 dfmpo 6202 cnvf1olem 6203 tpostpos 6243 tfrlemi1 6311 tfr1onlemaccex 6327 tfrcllemaccex 6340 elixpsn 6713 ixpsnf1o 6714 en1bg 6778 mapsnen 6789 xpassen 6808 fztp 10034 fzsuc2 10035 fseq1p1m1 10050 fseq1m1p1 10051 zfz1isolemsplit 10773 zfz1isolem1 10775 fsumm1 11379 fprodm1 11561 divalgmod 11886 ennnfonelemg 12358 ennnfonelemp1 12361 ennnfonelem1 12362 ennnfonelemnn0 12377 setsvalg 12446 strsetsid 12449 txdis 13071 |
Copyright terms: Public domain | W3C validator |