| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | GIF version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sneq 3633 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-sn 3628 |
| This theorem is referenced by: dmsnsnsng 5147 cnvsng 5155 ressn 5210 f1osng 5545 fsng 5735 fnressn 5748 fvsng 5758 2nd1st 6238 dfmpo 6281 cnvf1olem 6282 tpostpos 6322 tfrlemi1 6390 tfr1onlemaccex 6406 tfrcllemaccex 6419 elixpsn 6794 ixpsnf1o 6795 en1bg 6859 mapsnen 6870 xpassen 6889 fztp 10153 fzsuc2 10154 fseq1p1m1 10169 fseq1m1p1 10170 zfz1isolemsplit 10930 zfz1isolem1 10932 fsumm1 11581 fprodm1 11763 divalgmod 12092 ennnfonelemg 12620 ennnfonelemp1 12623 ennnfonelem1 12624 ennnfonelemnn0 12639 setsvalg 12708 strsetsid 12711 imasex 12948 imasival 12949 imasaddvallemg 12958 mulgval 13252 isunitd 13662 lspsnneg 13976 lspsnsub 13977 lmodindp1 13984 lidl0 14045 rsp0 14049 ridl0 14066 zrhrhmb 14178 znval 14192 psrval 14220 txdis 14513 |
| Copyright terms: Public domain | W3C validator |