ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqd GIF version

Theorem sneqd 3589
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.)
Hypothesis
Ref Expression
sneqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sneqd (𝜑 → {𝐴} = {𝐵})

Proof of Theorem sneqd
StepHypRef Expression
1 sneqd.1 . 2 (𝜑𝐴 = 𝐵)
2 sneq 3587 . 2 (𝐴 = 𝐵 → {𝐴} = {𝐵})
31, 2syl 14 1 (𝜑 → {𝐴} = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-sn 3582
This theorem is referenced by:  dmsnsnsng  5081  cnvsng  5089  ressn  5144  f1osng  5473  fsng  5658  fnressn  5671  fvsng  5681  2nd1st  6148  dfmpo  6191  cnvf1olem  6192  tpostpos  6232  tfrlemi1  6300  tfr1onlemaccex  6316  tfrcllemaccex  6329  elixpsn  6701  ixpsnf1o  6702  en1bg  6766  mapsnen  6777  xpassen  6796  fztp  10013  fzsuc2  10014  fseq1p1m1  10029  fseq1m1p1  10030  zfz1isolemsplit  10751  zfz1isolem1  10753  fsumm1  11357  fprodm1  11539  divalgmod  11864  ennnfonelemg  12336  ennnfonelemp1  12339  ennnfonelem1  12340  ennnfonelemnn0  12355  setsvalg  12424  strsetsid  12427  txdis  12917
  Copyright terms: Public domain W3C validator