| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | GIF version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sneqd | ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sneq 3634 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-sn 3629 |
| This theorem is referenced by: dmsnsnsng 5148 cnvsng 5156 ressn 5211 f1osng 5548 fsng 5738 fnressn 5751 fvsng 5761 2nd1st 6247 dfmpo 6290 cnvf1olem 6291 tpostpos 6331 tfrlemi1 6399 tfr1onlemaccex 6415 tfrcllemaccex 6428 elixpsn 6803 ixpsnf1o 6804 en1bg 6868 mapsnen 6879 xpassen 6898 fztp 10170 fzsuc2 10171 fseq1p1m1 10186 fseq1m1p1 10187 zfz1isolemsplit 10947 zfz1isolem1 10949 fsumm1 11598 fprodm1 11780 divalgmod 12109 ennnfonelemg 12645 ennnfonelemp1 12648 ennnfonelem1 12649 ennnfonelemnn0 12664 setsvalg 12733 strsetsid 12736 imasex 13007 imasival 13008 imasaddvallemg 13017 mulgval 13328 isunitd 13738 lspsnneg 14052 lspsnsub 14053 lmodindp1 14060 lidl0 14121 rsp0 14125 ridl0 14142 zrhrhmb 14254 znval 14268 psrval 14296 txdis 14597 |
| Copyright terms: Public domain | W3C validator |