Proof of Theorem imasplusg
| Step | Hyp | Ref
| Expression |
| 1 | | imasplusg.a |
. . 3
⊢ ✚ =
(+g‘𝑈) |
| 2 | | imasbas.u |
. . . . . 6
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 3 | | imasbas.v |
. . . . . 6
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 4 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 5 | | eqid 2196 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 6 | | eqid 2196 |
. . . . . 6
⊢ (
·𝑠 ‘𝑅) = ( ·𝑠
‘𝑅) |
| 7 | | eqidd 2197 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 8 | | eqidd 2197 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}) |
| 9 | | imasbas.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 10 | | imasbas.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 12949 |
. . . . 5
⊢ (𝜑 → 𝑈 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}) |
| 12 | 11 | fveq1d 5560 |
. . . 4
⊢ (𝜑 → (𝑈‘(+g‘ndx)) =
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}‘(+g‘ndx))) |
| 13 | | basendxnn 12734 |
. . . . . . . 8
⊢
(Base‘ndx) ∈ ℕ |
| 14 | | basfn 12736 |
. . . . . . . . . . 11
⊢ Base Fn
V |
| 15 | 10 | elexd 2776 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ V) |
| 16 | | funfvex 5575 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 17 | 16 | funfni 5358 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 18 | 14, 15, 17 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 19 | 3, 18 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ V) |
| 20 | | focdmex 6172 |
. . . . . . . . 9
⊢ (𝑉 ∈ V → (𝐹:𝑉–onto→𝐵 → 𝐵 ∈ V)) |
| 21 | 19, 9, 20 | sylc 62 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ V) |
| 22 | | opexg 4261 |
. . . . . . . 8
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 23 | 13, 21, 22 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 24 | | plusgndxnn 12789 |
. . . . . . . 8
⊢
(+g‘ndx) ∈ ℕ |
| 25 | | fof 5480 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
| 26 | 9, 25 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 27 | 26, 19 | fexd 5792 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ∈ V) |
| 28 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑝 ∈ V |
| 29 | | fvexg 5577 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹‘𝑝) ∈ V) |
| 30 | 27, 28, 29 | sylancl 413 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑝) ∈ V) |
| 31 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑞 ∈ V |
| 32 | | fvexg 5577 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹‘𝑞) ∈ V) |
| 33 | 27, 31, 32 | sylancl 413 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑞) ∈ V) |
| 34 | | opexg 4261 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑝) ∈ V ∧ (𝐹‘𝑞) ∈ V) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
| 35 | 30, 33, 34 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
| 36 | 28 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑝 ∈ V) |
| 37 | | plusgslid 12790 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 38 | 37 | slotex 12705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
| 39 | 10, 38 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (+g‘𝑅) ∈ V) |
| 40 | 31 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑞 ∈ V) |
| 41 | | ovexg 5956 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ V ∧
(+g‘𝑅)
∈ V ∧ 𝑞 ∈ V)
→ (𝑝(+g‘𝑅)𝑞) ∈ V) |
| 42 | 36, 39, 40, 41 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑝(+g‘𝑅)𝑞) ∈ V) |
| 43 | | fvexg 5577 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ V ∧ (𝑝(+g‘𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g‘𝑅)𝑞)) ∈ V) |
| 44 | 27, 42, 43 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(𝑝(+g‘𝑅)𝑞)) ∈ V) |
| 45 | | opexg 4261 |
. . . . . . . . . . . . . 14
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝(+g‘𝑅)𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 ∈ V) |
| 46 | 35, 44, 45 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 ∈ V) |
| 47 | | snexg 4217 |
. . . . . . . . . . . . 13
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 48 | 46, 47 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 49 | 48 | ralrimivw 2571 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 50 | | iunexg 6176 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 51 | 19, 49, 50 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 52 | 51 | ralrimivw 2571 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 53 | | iunexg 6176 |
. . . . . . . . 9
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 54 | 19, 52, 53 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
| 55 | | opexg 4261 |
. . . . . . . 8
⊢
(((+g‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) →
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉 ∈ V) |
| 56 | 24, 54, 55 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 →
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉 ∈ V) |
| 57 | | mulrslid 12809 |
. . . . . . . . 9
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
| 58 | 57 | simpri 113 |
. . . . . . . 8
⊢
(.r‘ndx) ∈ ℕ |
| 59 | 57 | slotex 12705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑍 → (.r‘𝑅) ∈ V) |
| 60 | 10, 59 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (.r‘𝑅) ∈ V) |
| 61 | | ovexg 5956 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ V ∧
(.r‘𝑅)
∈ V ∧ 𝑞 ∈ V)
→ (𝑝(.r‘𝑅)𝑞) ∈ V) |
| 62 | 36, 60, 40, 61 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑝(.r‘𝑅)𝑞) ∈ V) |
| 63 | | fvexg 5577 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ V ∧ (𝑝(.r‘𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r‘𝑅)𝑞)) ∈ V) |
| 64 | 27, 62, 63 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(𝑝(.r‘𝑅)𝑞)) ∈ V) |
| 65 | | opexg 4261 |
. . . . . . . . . . . . . 14
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝(.r‘𝑅)𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉 ∈ V) |
| 66 | 35, 64, 65 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉 ∈ V) |
| 67 | | snexg 4217 |
. . . . . . . . . . . . 13
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 68 | 66, 67 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 69 | 68 | ralrimivw 2571 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 70 | | iunexg 6176 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 71 | 19, 69, 70 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 72 | 71 | ralrimivw 2571 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 73 | | iunexg 6176 |
. . . . . . . . 9
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 74 | 19, 72, 73 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
| 75 | | opexg 4261 |
. . . . . . . 8
⊢
(((.r‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) →
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉 ∈ V) |
| 76 | 58, 74, 75 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 →
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉 ∈ V) |
| 77 | | tpexg 4479 |
. . . . . . 7
⊢
((〈(Base‘ndx), 𝐵〉 ∈ V ∧
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉 ∈ V ∧
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉 ∈ V) →
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
| 78 | 23, 56, 76, 77 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
| 79 | 11, 78 | eqeltrd 2273 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ V) |
| 80 | | plusgid 12788 |
. . . . 5
⊢
+g = Slot (+g‘ndx) |
| 81 | 79, 80, 24 | strndxid 12706 |
. . . 4
⊢ (𝜑 → (𝑈‘(+g‘ndx)) =
(+g‘𝑈)) |
| 82 | 24 | a1i 9 |
. . . . 5
⊢ (𝜑 → (+g‘ndx)
∈ ℕ) |
| 83 | | basendxnplusgndx 12802 |
. . . . . 6
⊢
(Base‘ndx) ≠ (+g‘ndx) |
| 84 | 83 | a1i 9 |
. . . . 5
⊢ (𝜑 → (Base‘ndx) ≠
(+g‘ndx)) |
| 85 | | plusgndxnmulrndx 12810 |
. . . . . 6
⊢
(+g‘ndx) ≠
(.r‘ndx) |
| 86 | 85 | a1i 9 |
. . . . 5
⊢ (𝜑 → (+g‘ndx)
≠ (.r‘ndx)) |
| 87 | | fvtp2g 5771 |
. . . . 5
⊢
((((+g‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) ∧ ((Base‘ndx)
≠ (+g‘ndx) ∧ (+g‘ndx) ≠
(.r‘ndx))) → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}‘(+g‘ndx))
= ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 88 | 82, 54, 84, 86, 87 | syl22anc 1250 |
. . . 4
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}‘(+g‘ndx))
= ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 89 | 12, 81, 88 | 3eqtr3rd 2238 |
. . 3
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} = (+g‘𝑈)) |
| 90 | 1, 89 | eqtr4id 2248 |
. 2
⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 91 | | imasplusg.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑅) |
| 92 | 91 | oveqi 5935 |
. . . . . . . . 9
⊢ (𝑝 + 𝑞) = (𝑝(+g‘𝑅)𝑞) |
| 93 | 92 | fveq2i 5561 |
. . . . . . . 8
⊢ (𝐹‘(𝑝 + 𝑞)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)) |
| 94 | 93 | opeq2i 3812 |
. . . . . . 7
⊢
〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 |
| 95 | 94 | sneqi 3634 |
. . . . . 6
⊢
{〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} |
| 96 | 95 | a1i 9 |
. . . . 5
⊢ (𝑞 ∈ 𝑉 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 97 | 96 | iuneq2i 3934 |
. . . 4
⊢ ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} = ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} |
| 98 | 97 | a1i 9 |
. . 3
⊢ (𝑝 ∈ 𝑉 → ∪
𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} = ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 99 | 98 | iuneq2i 3934 |
. 2
⊢ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} |
| 100 | 90, 99 | eqtr4di 2247 |
1
⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |