ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasplusg GIF version

Theorem imasplusg 12891
Description: The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasplusg.p + = (+g𝑅)
imasplusg.a = (+g𝑈)
Assertion
Ref Expression
imasplusg (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
Distinct variable groups:   𝐹,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   + (𝑞,𝑝)   (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasplusg
StepHypRef Expression
1 imasplusg.a . . 3 = (+g𝑈)
2 imasbas.u . . . . . 6 (𝜑𝑈 = (𝐹s 𝑅))
3 imasbas.v . . . . . 6 (𝜑𝑉 = (Base‘𝑅))
4 eqid 2193 . . . . . 6 (+g𝑅) = (+g𝑅)
5 eqid 2193 . . . . . 6 (.r𝑅) = (.r𝑅)
6 eqid 2193 . . . . . 6 ( ·𝑠𝑅) = ( ·𝑠𝑅)
7 eqidd 2194 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
8 eqidd 2194 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
9 imasbas.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
10 imasbas.r . . . . . 6 (𝜑𝑅𝑍)
112, 3, 4, 5, 6, 7, 8, 9, 10imasival 12889 . . . . 5 (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
1211fveq1d 5556 . . . 4 (𝜑 → (𝑈‘(+g‘ndx)) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩}‘(+g‘ndx)))
13 basendxnn 12674 . . . . . . . 8 (Base‘ndx) ∈ ℕ
14 basfn 12676 . . . . . . . . . . 11 Base Fn V
1510elexd 2773 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
16 funfvex 5571 . . . . . . . . . . . 12 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1716funfni 5354 . . . . . . . . . . 11 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1814, 15, 17sylancr 414 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) ∈ V)
193, 18eqeltrd 2270 . . . . . . . . 9 (𝜑𝑉 ∈ V)
20 focdmex 6167 . . . . . . . . 9 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
2119, 9, 20sylc 62 . . . . . . . 8 (𝜑𝐵 ∈ V)
22 opexg 4257 . . . . . . . 8 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
2313, 21, 22sylancr 414 . . . . . . 7 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
24 plusgndxnn 12729 . . . . . . . 8 (+g‘ndx) ∈ ℕ
25 fof 5476 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
269, 25syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑉𝐵)
2726, 19fexd 5788 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ V)
28 vex 2763 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
29 fvexg 5573 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹𝑝) ∈ V)
3027, 28, 29sylancl 413 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑝) ∈ V)
31 vex 2763 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
32 fvexg 5573 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹𝑞) ∈ V)
3327, 31, 32sylancl 413 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑞) ∈ V)
34 opexg 4257 . . . . . . . . . . . . . . 15 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
3530, 33, 34syl2anc 411 . . . . . . . . . . . . . 14 (𝜑 → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
3628a1i 9 . . . . . . . . . . . . . . . 16 (𝜑𝑝 ∈ V)
37 plusgslid 12730 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3837slotex 12645 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (+g𝑅) ∈ V)
3910, 38syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (+g𝑅) ∈ V)
4031a1i 9 . . . . . . . . . . . . . . . 16 (𝜑𝑞 ∈ V)
41 ovexg 5952 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ V ∧ (+g𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(+g𝑅)𝑞) ∈ V)
4236, 39, 40, 41syl3anc 1249 . . . . . . . . . . . . . . 15 (𝜑 → (𝑝(+g𝑅)𝑞) ∈ V)
43 fvexg 5573 . . . . . . . . . . . . . . 15 ((𝐹 ∈ V ∧ (𝑝(+g𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
4427, 42, 43syl2anc 411 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
45 opexg 4257 . . . . . . . . . . . . . 14 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
4635, 44, 45syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
47 snexg 4213 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4846, 47syl 14 . . . . . . . . . . . 12 (𝜑 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4948ralrimivw 2568 . . . . . . . . . . 11 (𝜑 → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
50 iunexg 6171 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
5119, 49, 50syl2anc 411 . . . . . . . . . 10 (𝜑 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
5251ralrimivw 2568 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
53 iunexg 6171 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
5419, 52, 53syl2anc 411 . . . . . . . 8 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
55 opexg 4257 . . . . . . . 8 (((+g‘ndx) ∈ ℕ ∧ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
5624, 54, 55sylancr 414 . . . . . . 7 (𝜑 → ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
57 mulrslid 12749 . . . . . . . . 9 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
5857simpri 113 . . . . . . . 8 (.r‘ndx) ∈ ℕ
5957slotex 12645 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (.r𝑅) ∈ V)
6010, 59syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝑅) ∈ V)
61 ovexg 5952 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(.r𝑅)𝑞) ∈ V)
6236, 60, 40, 61syl3anc 1249 . . . . . . . . . . . . . . 15 (𝜑 → (𝑝(.r𝑅)𝑞) ∈ V)
63 fvexg 5573 . . . . . . . . . . . . . . 15 ((𝐹 ∈ V ∧ (𝑝(.r𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
6427, 62, 63syl2anc 411 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
65 opexg 4257 . . . . . . . . . . . . . 14 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
6635, 64, 65syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
67 snexg 4213 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6866, 67syl 14 . . . . . . . . . . . 12 (𝜑 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6968ralrimivw 2568 . . . . . . . . . . 11 (𝜑 → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
70 iunexg 6171 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
7119, 69, 70syl2anc 411 . . . . . . . . . 10 (𝜑 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
7271ralrimivw 2568 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
73 iunexg 6171 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
7419, 72, 73syl2anc 411 . . . . . . . 8 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
75 opexg 4257 . . . . . . . 8 (((.r‘ndx) ∈ ℕ ∧ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
7658, 74, 75sylancr 414 . . . . . . 7 (𝜑 → ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
77 tpexg 4475 . . . . . . 7 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V ∧ ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
7823, 56, 76, 77syl3anc 1249 . . . . . 6 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
7911, 78eqeltrd 2270 . . . . 5 (𝜑𝑈 ∈ V)
80 plusgid 12728 . . . . 5 +g = Slot (+g‘ndx)
8179, 80, 24strndxid 12646 . . . 4 (𝜑 → (𝑈‘(+g‘ndx)) = (+g𝑈))
8224a1i 9 . . . . 5 (𝜑 → (+g‘ndx) ∈ ℕ)
83 basendxnplusgndx 12742 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
8483a1i 9 . . . . 5 (𝜑 → (Base‘ndx) ≠ (+g‘ndx))
85 plusgndxnmulrndx 12750 . . . . . 6 (+g‘ndx) ≠ (.r‘ndx)
8685a1i 9 . . . . 5 (𝜑 → (+g‘ndx) ≠ (.r‘ndx))
87 fvtp2g 5767 . . . . 5 ((((+g‘ndx) ∈ ℕ ∧ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) ∧ ((Base‘ndx) ≠ (+g‘ndx) ∧ (+g‘ndx) ≠ (.r‘ndx))) → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩}‘(+g‘ndx)) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
8882, 54, 84, 86, 87syl22anc 1250 . . . 4 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩}‘(+g‘ndx)) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
8912, 81, 883eqtr3rd 2235 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} = (+g𝑈))
901, 89eqtr4id 2245 . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
91 imasplusg.p . . . . . . . . . 10 + = (+g𝑅)
9291oveqi 5931 . . . . . . . . 9 (𝑝 + 𝑞) = (𝑝(+g𝑅)𝑞)
9392fveq2i 5557 . . . . . . . 8 (𝐹‘(𝑝 + 𝑞)) = (𝐹‘(𝑝(+g𝑅)𝑞))
9493opeq2i 3808 . . . . . . 7 ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩
9594sneqi 3630 . . . . . 6 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}
9695a1i 9 . . . . 5 (𝑞𝑉 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9796iuneq2i 3930 . . . 4 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}
9897a1i 9 . . 3 (𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9998iuneq2i 3930 . 2 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}
10090, 99eqtr4di 2244 1 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wne 2364  wral 2472  Vcvv 2760  {csn 3618  {ctp 3620  cop 3621   ciun 3912   Fn wfn 5249  wf 5250  ontowfo 5252  cfv 5254  (class class class)co 5918  cn 8982  ndxcnx 12615  Slot cslot 12617  Basecbs 12618  +gcplusg 12695  .rcmulr 12696   ·𝑠 cvsca 12699  s cimas 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-iimas 12885
This theorem is referenced by:  imasaddfn  12900  imasaddval  12901  imasaddf  12902  qusaddval  12918  qusaddf  12919
  Copyright terms: Public domain W3C validator