![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > soeq2 | GIF version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soss 4150 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
2 | soss 4150 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
3 | 1, 2 | anim12i 332 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) |
4 | eqss 3041 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | dfbi2 381 | . . 3 ⊢ ((𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) | |
6 | 3, 4, 5 | 3imtr4i 200 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴)) |
7 | 6 | bicomd 140 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1290 ⊆ wss 3000 Or wor 4131 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-in 3006 df-ss 3013 df-po 4132 df-iso 4133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |