| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > soeq2 | GIF version | ||
| Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| soeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | soss 4349 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 2 | soss 4349 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
| 3 | 1, 2 | anim12i 338 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) | 
| 4 | eqss 3198 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | dfbi2 388 | . . 3 ⊢ ((𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴)) | 
| 7 | 6 | bicomd 141 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3157 Or wor 4330 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-in 3163 df-ss 3170 df-po 4331 df-iso 4332 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |