Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > soeq2 | GIF version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soss 4299 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
2 | soss 4299 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
3 | 1, 2 | anim12i 336 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) |
4 | eqss 3162 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | dfbi2 386 | . . 3 ⊢ ((𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) | |
6 | 3, 4, 5 | 3imtr4i 200 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴)) |
7 | 6 | bicomd 140 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊆ wss 3121 Or wor 4280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-in 3127 df-ss 3134 df-po 4281 df-iso 4282 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |