ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq2 GIF version

Theorem soeq2 4294
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))

Proof of Theorem soeq2
StepHypRef Expression
1 soss 4292 . . . 4 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
2 soss 4292 . . . 4 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anim12i 336 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
4 eqss 3157 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 dfbi2 386 . . 3 ((𝑅 Or 𝐵𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
63, 4, 53imtr4i 200 . 2 (𝐴 = 𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
76bicomd 140 1 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wss 3116   Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-in 3122  df-ss 3129  df-po 4274  df-iso 4275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator