ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq2 GIF version

Theorem soeq2 4301
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))

Proof of Theorem soeq2
StepHypRef Expression
1 soss 4299 . . . 4 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
2 soss 4299 . . . 4 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anim12i 336 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
4 eqss 3162 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 dfbi2 386 . . 3 ((𝑅 Or 𝐵𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
63, 4, 53imtr4i 200 . 2 (𝐴 = 𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
76bicomd 140 1 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wss 3121   Or wor 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-in 3127  df-ss 3134  df-po 4281  df-iso 4282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator