ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5rbb GIF version

Theorem syl5rbb 191
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl5rbb.1 (𝜑𝜓)
syl5rbb.2 (𝜒 → (𝜓𝜃))
Assertion
Ref Expression
syl5rbb (𝜒 → (𝜃𝜑))

Proof of Theorem syl5rbb
StepHypRef Expression
1 syl5rbb.1 . . 3 (𝜑𝜓)
2 syl5rbb.2 . . 3 (𝜒 → (𝜓𝜃))
31, 2syl5bb 190 . 2 (𝜒 → (𝜑𝜃))
43bicomd 139 1 (𝜒 → (𝜃𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  syl5rbbr  193  pm5.17dc  848  dn1dc  906  csbabg  2989  uniiunlem  3109  inimasn  4849  cnvpom  4973  fnresdisj  5124  f1oiso  5605  reldm  5956  1idprl  7147  1idpru  7148  nndiv  8461  fzn  9454  fz1sbc  9506  bj-indeq  11779
  Copyright terms: Public domain W3C validator