![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5rbb | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5rbb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl5rbb.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5rbb | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | syl5rbb.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5bb 190 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 139 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl5rbbr 193 pm5.17dc 848 dn1dc 906 csbabg 2989 uniiunlem 3109 inimasn 4849 cnvpom 4973 fnresdisj 5124 f1oiso 5605 reldm 5956 1idprl 7147 1idpru 7148 nndiv 8461 fzn 9454 fz1sbc 9506 bj-indeq 11779 |
Copyright terms: Public domain | W3C validator |