ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz1sbc GIF version

Theorem fz1sbc 10052
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
Assertion
Ref Expression
fz1sbc (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem fz1sbc
StepHypRef Expression
1 sbc6g 2979 . 2 (𝑁 ∈ ℤ → ([𝑁 / 𝑘]𝜑 ↔ ∀𝑘(𝑘 = 𝑁𝜑)))
2 df-ral 2453 . . 3 (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ ∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑))
3 elfz1eq 9991 . . . . . 6 (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁)
4 elfz3 9990 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁))
5 eleq1 2233 . . . . . . 7 (𝑘 = 𝑁 → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑁 ∈ (𝑁...𝑁)))
64, 5syl5ibrcom 156 . . . . . 6 (𝑁 ∈ ℤ → (𝑘 = 𝑁𝑘 ∈ (𝑁...𝑁)))
73, 6impbid2 142 . . . . 5 (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁))
87imbi1d 230 . . . 4 (𝑁 ∈ ℤ → ((𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ (𝑘 = 𝑁𝜑)))
98albidv 1817 . . 3 (𝑁 ∈ ℤ → (∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ ∀𝑘(𝑘 = 𝑁𝜑)))
102, 9bitr2id 192 . 2 (𝑁 ∈ ℤ → (∀𝑘(𝑘 = 𝑁𝜑) ↔ ∀𝑘 ∈ (𝑁...𝑁)𝜑))
111, 10bitr2d 188 1 (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wcel 2141  wral 2448  [wsbc 2955  (class class class)co 5853  cz 9212  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator