ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz1sbc GIF version

Theorem fz1sbc 10125
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
Assertion
Ref Expression
fz1sbc (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem fz1sbc
StepHypRef Expression
1 sbc6g 3002 . 2 (𝑁 ∈ ℤ → ([𝑁 / 𝑘]𝜑 ↔ ∀𝑘(𝑘 = 𝑁𝜑)))
2 df-ral 2473 . . 3 (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ ∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑))
3 elfz1eq 10064 . . . . . 6 (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁)
4 elfz3 10063 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁))
5 eleq1 2252 . . . . . . 7 (𝑘 = 𝑁 → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑁 ∈ (𝑁...𝑁)))
64, 5syl5ibrcom 157 . . . . . 6 (𝑁 ∈ ℤ → (𝑘 = 𝑁𝑘 ∈ (𝑁...𝑁)))
73, 6impbid2 143 . . . . 5 (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁))
87imbi1d 231 . . . 4 (𝑁 ∈ ℤ → ((𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ (𝑘 = 𝑁𝜑)))
98albidv 1835 . . 3 (𝑁 ∈ ℤ → (∀𝑘(𝑘 ∈ (𝑁...𝑁) → 𝜑) ↔ ∀𝑘(𝑘 = 𝑁𝜑)))
102, 9bitr2id 193 . 2 (𝑁 ∈ ℤ → (∀𝑘(𝑘 = 𝑁𝜑) ↔ ∀𝑘 ∈ (𝑁...𝑁)𝜑))
111, 10bitr2d 189 1 (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2160  wral 2468  [wsbc 2977  (class class class)co 5895  cz 9282  ...cfz 10037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-pre-ltirr 7952  ax-pre-apti 7955
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-neg 8160  df-z 9283  df-uz 9558  df-fz 10038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator