ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbabg GIF version

Theorem csbabg 3029
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
csbabg (𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem csbabg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbccom 2954 . . . 4 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
2 df-clab 2102 . . . . 5 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
3 sbsbc 2884 . . . . 5 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
42, 3bitri 183 . . . 4 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
5 df-clab 2102 . . . . . 6 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
6 sbsbc 2884 . . . . . 6 ([𝑧 / 𝑦]𝜑[𝑧 / 𝑦]𝜑)
75, 6bitri 183 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
87sbcbii 2938 . . . 4 ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
91, 4, 83bitr4i 211 . . 3 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑})
10 sbcel2g 2992 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ 𝑧𝐴 / 𝑥{𝑦𝜑}))
119, 10syl5rbb 192 . 2 (𝐴𝑉 → (𝑧𝐴 / 𝑥{𝑦𝜑} ↔ 𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
1211eqrdv 2113 1 (𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  [wsb 1718  {cab 2101  [wsbc 2880  csb 2973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-sbc 2881  df-csb 2974
This theorem is referenced by:  csbsng  3552  csbunig  3712  csbxpg  4588  csbdmg  4701  csbrng  4968
  Copyright terms: Public domain W3C validator