![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reldm | GIF version |
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
reldm | ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 6238 | . . 3 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) | |
2 | vex 2763 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 1stexg 6220 | . . . . . . 7 ⊢ (𝑥 ∈ V → (1st ‘𝑥) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1st ‘𝑥) ∈ V |
5 | eqid 2193 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | |
6 | 4, 5 | fnmpti 5382 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 |
7 | fvelrnb 5604 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦) |
9 | fveq2 5554 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (1st ‘𝑥) = (1st ‘𝑧)) | |
10 | vex 2763 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 1stexg 6220 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (1st ‘𝑧) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (1st ‘𝑧) ∈ V |
13 | 9, 5, 12 | fvmpt 5634 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = (1st ‘𝑧)) |
14 | 13 | eqeq1d 2202 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ (1st ‘𝑧) = 𝑦)) |
15 | 14 | rexbiia 2509 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦) |
16 | 15 | a1i 9 | . . . 4 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) |
17 | 8, 16 | bitr2id 193 | . . 3 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
18 | 1, 17 | bitrd 188 | . 2 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
19 | 18 | eqrdv 2191 | 1 ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ↦ cmpt 4090 dom cdm 4659 ran crn 4660 Rel wrel 4664 Fn wfn 5249 ‘cfv 5254 1st c1st 6191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fo 5260 df-fv 5262 df-1st 6193 df-2nd 6194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |