ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm GIF version

Theorem reldm 6262
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem reldm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6261 . . 3 (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
2 vex 2774 . . . . . . 7 𝑥 ∈ V
3 1stexg 6243 . . . . . . 7 (𝑥 ∈ V → (1st𝑥) ∈ V)
42, 3ax-mp 5 . . . . . 6 (1st𝑥) ∈ V
5 eqid 2204 . . . . . 6 (𝑥𝐴 ↦ (1st𝑥)) = (𝑥𝐴 ↦ (1st𝑥))
64, 5fnmpti 5398 . . . . 5 (𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴
7 fvelrnb 5620 . . . . 5 ((𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦))
86, 7ax-mp 5 . . . 4 (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦)
9 fveq2 5570 . . . . . . . 8 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
10 vex 2774 . . . . . . . . 9 𝑧 ∈ V
11 1stexg 6243 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
1210, 11ax-mp 5 . . . . . . . 8 (1st𝑧) ∈ V
139, 5, 12fvmpt 5650 . . . . . . 7 (𝑧𝐴 → ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = (1st𝑧))
1413eqeq1d 2213 . . . . . 6 (𝑧𝐴 → (((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ (1st𝑧) = 𝑦))
1514rexbiia 2520 . . . . 5 (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦)
1615a1i 9 . . . 4 (Rel 𝐴 → (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
178, 16bitr2id 193 . . 3 (Rel 𝐴 → (∃𝑧𝐴 (1st𝑧) = 𝑦𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
181, 17bitrd 188 . 2 (Rel 𝐴 → (𝑦 ∈ dom 𝐴𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
1918eqrdv 2202 1 (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wcel 2175  wrex 2484  Vcvv 2771  cmpt 4104  dom cdm 4673  ran crn 4674  Rel wrel 4678   Fn wfn 5263  cfv 5268  1st c1st 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fo 5274  df-fv 5276  df-1st 6216  df-2nd 6217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator