![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reldm | GIF version |
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
reldm | ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 6203 | . . 3 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) | |
2 | vex 2754 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 1stexg 6185 | . . . . . . 7 ⊢ (𝑥 ∈ V → (1st ‘𝑥) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1st ‘𝑥) ∈ V |
5 | eqid 2188 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | |
6 | 4, 5 | fnmpti 5358 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 |
7 | fvelrnb 5578 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦) |
9 | fveq2 5529 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (1st ‘𝑥) = (1st ‘𝑧)) | |
10 | vex 2754 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 1stexg 6185 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (1st ‘𝑧) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (1st ‘𝑧) ∈ V |
13 | 9, 5, 12 | fvmpt 5608 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = (1st ‘𝑧)) |
14 | 13 | eqeq1d 2197 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ (1st ‘𝑧) = 𝑦)) |
15 | 14 | rexbiia 2504 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦) |
16 | 15 | a1i 9 | . . . 4 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) |
17 | 8, 16 | bitr2id 193 | . . 3 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
18 | 1, 17 | bitrd 188 | . 2 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
19 | 18 | eqrdv 2186 | 1 ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2159 ∃wrex 2468 Vcvv 2751 ↦ cmpt 4078 dom cdm 4640 ran crn 4641 Rel wrel 4645 Fn wfn 5225 ‘cfv 5230 1st c1st 6156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-sbc 2977 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-fo 5236 df-fv 5238 df-1st 6158 df-2nd 6159 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |