ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm GIF version

Theorem reldm 6285
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem reldm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6284 . . 3 (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
2 vex 2776 . . . . . . 7 𝑥 ∈ V
3 1stexg 6266 . . . . . . 7 (𝑥 ∈ V → (1st𝑥) ∈ V)
42, 3ax-mp 5 . . . . . 6 (1st𝑥) ∈ V
5 eqid 2206 . . . . . 6 (𝑥𝐴 ↦ (1st𝑥)) = (𝑥𝐴 ↦ (1st𝑥))
64, 5fnmpti 5414 . . . . 5 (𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴
7 fvelrnb 5639 . . . . 5 ((𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦))
86, 7ax-mp 5 . . . 4 (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦)
9 fveq2 5589 . . . . . . . 8 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
10 vex 2776 . . . . . . . . 9 𝑧 ∈ V
11 1stexg 6266 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
1210, 11ax-mp 5 . . . . . . . 8 (1st𝑧) ∈ V
139, 5, 12fvmpt 5669 . . . . . . 7 (𝑧𝐴 → ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = (1st𝑧))
1413eqeq1d 2215 . . . . . 6 (𝑧𝐴 → (((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ (1st𝑧) = 𝑦))
1514rexbiia 2522 . . . . 5 (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦)
1615a1i 9 . . . 4 (Rel 𝐴 → (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
178, 16bitr2id 193 . . 3 (Rel 𝐴 → (∃𝑧𝐴 (1st𝑧) = 𝑦𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
181, 17bitrd 188 . 2 (Rel 𝐴 → (𝑦 ∈ dom 𝐴𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
1918eqrdv 2204 1 (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773  cmpt 4113  dom cdm 4683  ran crn 4684  Rel wrel 4688   Fn wfn 5275  cfv 5280  1st c1st 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fo 5286  df-fv 5288  df-1st 6239  df-2nd 6240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator