![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reldm | GIF version |
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
reldm | ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 6183 | . . 3 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) | |
2 | vex 2740 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 1stexg 6165 | . . . . . . 7 ⊢ (𝑥 ∈ V → (1st ‘𝑥) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (1st ‘𝑥) ∈ V |
5 | eqid 2177 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | |
6 | 4, 5 | fnmpti 5343 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 |
7 | fvelrnb 5562 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦) |
9 | fveq2 5514 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (1st ‘𝑥) = (1st ‘𝑧)) | |
10 | vex 2740 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 1stexg 6165 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (1st ‘𝑧) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (1st ‘𝑧) ∈ V |
13 | 9, 5, 12 | fvmpt 5592 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = (1st ‘𝑧)) |
14 | 13 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ (1st ‘𝑧) = 𝑦)) |
15 | 14 | rexbiia 2492 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦) |
16 | 15 | a1i 9 | . . . 4 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) |
17 | 8, 16 | bitr2id 193 | . . 3 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
18 | 1, 17 | bitrd 188 | . 2 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
19 | 18 | eqrdv 2175 | 1 ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 Vcvv 2737 ↦ cmpt 4063 dom cdm 4625 ran crn 4626 Rel wrel 4630 Fn wfn 5210 ‘cfv 5215 1st c1st 6136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-fo 5221 df-fv 5223 df-1st 6138 df-2nd 6139 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |