 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm GIF version

Theorem reldm 5891
 Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem reldm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 5890 . . 3 (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
2 vex 2615 . . . . . . 7 𝑥 ∈ V
3 1stexg 5873 . . . . . . 7 (𝑥 ∈ V → (1st𝑥) ∈ V)
42, 3ax-mp 7 . . . . . 6 (1st𝑥) ∈ V
5 eqid 2083 . . . . . 6 (𝑥𝐴 ↦ (1st𝑥)) = (𝑥𝐴 ↦ (1st𝑥))
64, 5fnmpti 5095 . . . . 5 (𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴
7 fvelrnb 5297 . . . . 5 ((𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦))
86, 7ax-mp 7 . . . 4 (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦)
9 fveq2 5253 . . . . . . . 8 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
10 vex 2615 . . . . . . . . 9 𝑧 ∈ V
11 1stexg 5873 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
1210, 11ax-mp 7 . . . . . . . 8 (1st𝑧) ∈ V
139, 5, 12fvmpt 5326 . . . . . . 7 (𝑧𝐴 → ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = (1st𝑧))
1413eqeq1d 2091 . . . . . 6 (𝑧𝐴 → (((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ (1st𝑧) = 𝑦))
1514rexbiia 2387 . . . . 5 (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦)
1615a1i 9 . . . 4 (Rel 𝐴 → (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
178, 16syl5rbb 191 . . 3 (Rel 𝐴 → (∃𝑧𝐴 (1st𝑧) = 𝑦𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
181, 17bitrd 186 . 2 (Rel 𝐴 → (𝑦 ∈ dom 𝐴𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
1918eqrdv 2081 1 (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103   = wceq 1285   ∈ wcel 1434  ∃wrex 2354  Vcvv 2612   ↦ cmpt 3865  dom cdm 4401  ran crn 4402  Rel wrel 4406   Fn wfn 4964  ‘cfv 4969  1st c1st 5844 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fo 4975  df-fv 4977  df-1st 5846  df-2nd 5847 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator