ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm GIF version

Theorem reldm 6244
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem reldm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6243 . . 3 (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
2 vex 2766 . . . . . . 7 𝑥 ∈ V
3 1stexg 6225 . . . . . . 7 (𝑥 ∈ V → (1st𝑥) ∈ V)
42, 3ax-mp 5 . . . . . 6 (1st𝑥) ∈ V
5 eqid 2196 . . . . . 6 (𝑥𝐴 ↦ (1st𝑥)) = (𝑥𝐴 ↦ (1st𝑥))
64, 5fnmpti 5386 . . . . 5 (𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴
7 fvelrnb 5608 . . . . 5 ((𝑥𝐴 ↦ (1st𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦))
86, 7ax-mp 5 . . . 4 (𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥)) ↔ ∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦)
9 fveq2 5558 . . . . . . . 8 (𝑥 = 𝑧 → (1st𝑥) = (1st𝑧))
10 vex 2766 . . . . . . . . 9 𝑧 ∈ V
11 1stexg 6225 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
1210, 11ax-mp 5 . . . . . . . 8 (1st𝑧) ∈ V
139, 5, 12fvmpt 5638 . . . . . . 7 (𝑧𝐴 → ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = (1st𝑧))
1413eqeq1d 2205 . . . . . 6 (𝑧𝐴 → (((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ (1st𝑧) = 𝑦))
1514rexbiia 2512 . . . . 5 (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦)
1615a1i 9 . . . 4 (Rel 𝐴 → (∃𝑧𝐴 ((𝑥𝐴 ↦ (1st𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧𝐴 (1st𝑧) = 𝑦))
178, 16bitr2id 193 . . 3 (Rel 𝐴 → (∃𝑧𝐴 (1st𝑧) = 𝑦𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
181, 17bitrd 188 . 2 (Rel 𝐴 → (𝑦 ∈ dom 𝐴𝑦 ∈ ran (𝑥𝐴 ↦ (1st𝑥))))
1918eqrdv 2194 1 (Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763  cmpt 4094  dom cdm 4663  ran crn 4664  Rel wrel 4668   Fn wfn 5253  cfv 5258  1st c1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator