| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴–1-1-onto→𝐵) |
| 2 | | f1of1 5503 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
| 3 | | df-br 4034 |
. . . . 5
⊢ ((𝐻‘𝑣)𝑆(𝐻‘𝑢) ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆) |
| 4 | | eleq2 2260 |
. . . . . . 7
⊢ (𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)})) |
| 5 | | f1fn 5465 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1→𝐵 → 𝐻 Fn 𝐴) |
| 6 | | funfvex 5575 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐻 ∧ 𝑣 ∈ dom 𝐻) → (𝐻‘𝑣) ∈ V) |
| 7 | 6 | funfni 5358 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝐻‘𝑣) ∈ V) |
| 8 | | funfvex 5575 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐻 ∧ 𝑢 ∈ dom 𝐻) → (𝐻‘𝑢) ∈ V) |
| 9 | 8 | funfni 5358 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝐻‘𝑢) ∈ V) |
| 10 | 7, 9 | anim12dan 600 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → ((𝐻‘𝑣) ∈ V ∧ (𝐻‘𝑢) ∈ V)) |
| 11 | | eqeq1 2203 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐻‘𝑣) → (𝑧 = (𝐻‘𝑥) ↔ (𝐻‘𝑣) = (𝐻‘𝑥))) |
| 12 | 11 | anbi1d 465 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐻‘𝑣) → ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)))) |
| 13 | 12 | anbi1d 465 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑣) → (((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 14 | 13 | 2rexbidv 2522 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻‘𝑣) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 15 | | eqeq1 2203 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐻‘𝑢) → (𝑤 = (𝐻‘𝑦) ↔ (𝐻‘𝑢) = (𝐻‘𝑦))) |
| 16 | 15 | anbi2d 464 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐻‘𝑢) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)))) |
| 17 | 16 | anbi1d 465 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐻‘𝑢) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 18 | 17 | 2rexbidv 2522 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐻‘𝑢) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 19 | 14, 18 | opelopabg 4302 |
. . . . . . . . . 10
⊢ (((𝐻‘𝑣) ∈ V ∧ (𝐻‘𝑢) ∈ V) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 20 | 10, 19 | syl 14 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 21 | 5, 20 | sylan 283 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 22 | | anass 401 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
| 23 | | f1fveq 5819 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑣 = 𝑥)) |
| 24 | | equcom 1720 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑥 ↔ 𝑥 = 𝑣) |
| 25 | 23, 24 | bitrdi 196 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
| 26 | 25 | anassrs 400 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
| 27 | 26 | anbi1d 465 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 28 | 22, 27 | bitrid 192 |
. . . . . . . . . . . . . 14
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 29 | 28 | rexbidv 2498 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 30 | | r19.42v 2654 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
| 31 | 29, 30 | bitrdi 196 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 32 | 31 | rexbidva 2494 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 33 | | breq1 4036 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (𝑥𝑅𝑦 ↔ 𝑣𝑅𝑦)) |
| 34 | 33 | anbi2d 464 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 35 | 34 | rexbidv 2498 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 36 | 35 | ceqsrexv 2894 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 37 | 36 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 38 | 32, 37 | bitrd 188 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 39 | | f1fveq 5819 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑢 = 𝑦)) |
| 40 | | equcom 1720 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑦 ↔ 𝑦 = 𝑢) |
| 41 | 39, 40 | bitrdi 196 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
| 42 | 41 | anassrs 400 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
| 43 | 42 | anbi1d 465 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
| 44 | 43 | rexbidva 2494 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
| 45 | | breq2 4037 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑢 → (𝑣𝑅𝑦 ↔ 𝑣𝑅𝑢)) |
| 46 | 45 | ceqsrexv 2894 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝐴 → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 47 | 46 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 48 | 44, 47 | bitrd 188 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 49 | 38, 48 | sylan9bb 462 |
. . . . . . . . 9
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ (𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 50 | 49 | anandis 592 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 51 | 21, 50 | bitrd 188 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢)) |
| 52 | 4, 51 | sylan9bbr 463 |
. . . . . 6
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
| 53 | 52 | an32s 568 |
. . . . 5
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
| 54 | 3, 53 | bitr2id 193 |
. . . 4
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
| 55 | 54 | ralrimivva 2579 |
. . 3
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
| 56 | 2, 55 | sylan 283 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
| 57 | | df-isom 5267 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢)))) |
| 58 | 1, 56, 57 | sylanbrc 417 |
1
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |