Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴–1-1-onto→𝐵) |
2 | | f1of1 5431 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
3 | | df-br 3983 |
. . . . 5
⊢ ((𝐻‘𝑣)𝑆(𝐻‘𝑢) ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆) |
4 | | eleq2 2230 |
. . . . . . 7
⊢ (𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)})) |
5 | | f1fn 5395 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1→𝐵 → 𝐻 Fn 𝐴) |
6 | | funfvex 5503 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐻 ∧ 𝑣 ∈ dom 𝐻) → (𝐻‘𝑣) ∈ V) |
7 | 6 | funfni 5288 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝐻‘𝑣) ∈ V) |
8 | | funfvex 5503 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐻 ∧ 𝑢 ∈ dom 𝐻) → (𝐻‘𝑢) ∈ V) |
9 | 8 | funfni 5288 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝐻‘𝑢) ∈ V) |
10 | 7, 9 | anim12dan 590 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → ((𝐻‘𝑣) ∈ V ∧ (𝐻‘𝑢) ∈ V)) |
11 | | eqeq1 2172 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐻‘𝑣) → (𝑧 = (𝐻‘𝑥) ↔ (𝐻‘𝑣) = (𝐻‘𝑥))) |
12 | 11 | anbi1d 461 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐻‘𝑣) → ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)))) |
13 | 12 | anbi1d 461 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑣) → (((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
14 | 13 | 2rexbidv 2491 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻‘𝑣) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
15 | | eqeq1 2172 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐻‘𝑢) → (𝑤 = (𝐻‘𝑦) ↔ (𝐻‘𝑢) = (𝐻‘𝑦))) |
16 | 15 | anbi2d 460 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐻‘𝑢) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)))) |
17 | 16 | anbi1d 461 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐻‘𝑢) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
18 | 17 | 2rexbidv 2491 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐻‘𝑢) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
19 | 14, 18 | opelopabg 4246 |
. . . . . . . . . 10
⊢ (((𝐻‘𝑣) ∈ V ∧ (𝐻‘𝑢) ∈ V) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
20 | 10, 19 | syl 14 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
21 | 5, 20 | sylan 281 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
22 | | anass 399 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
23 | | f1fveq 5740 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑣 = 𝑥)) |
24 | | equcom 1694 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑥 ↔ 𝑥 = 𝑣) |
25 | 23, 24 | bitrdi 195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
26 | 25 | anassrs 398 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
27 | 26 | anbi1d 461 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
28 | 22, 27 | syl5bb 191 |
. . . . . . . . . . . . . 14
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
29 | 28 | rexbidv 2467 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
30 | | r19.42v 2623 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
31 | 29, 30 | bitrdi 195 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
32 | 31 | rexbidva 2463 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
33 | | breq1 3985 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (𝑥𝑅𝑦 ↔ 𝑣𝑅𝑦)) |
34 | 33 | anbi2d 460 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
35 | 34 | rexbidv 2467 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
36 | 35 | ceqsrexv 2856 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
37 | 36 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
38 | 32, 37 | bitrd 187 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
39 | | f1fveq 5740 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑢 = 𝑦)) |
40 | | equcom 1694 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑦 ↔ 𝑦 = 𝑢) |
41 | 39, 40 | bitrdi 195 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
42 | 41 | anassrs 398 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
43 | 42 | anbi1d 461 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
44 | 43 | rexbidva 2463 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
45 | | breq2 3986 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑢 → (𝑣𝑅𝑦 ↔ 𝑣𝑅𝑢)) |
46 | 45 | ceqsrexv 2856 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝐴 → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
47 | 46 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
48 | 44, 47 | bitrd 187 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
49 | 38, 48 | sylan9bb 458 |
. . . . . . . . 9
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ (𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
50 | 49 | anandis 582 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
51 | 21, 50 | bitrd 187 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢)) |
52 | 4, 51 | sylan9bbr 459 |
. . . . . 6
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
53 | 52 | an32s 558 |
. . . . 5
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
54 | 3, 53 | bitr2id 192 |
. . . 4
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
55 | 54 | ralrimivva 2548 |
. . 3
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
56 | 2, 55 | sylan 281 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
57 | | df-isom 5197 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢)))) |
58 | 1, 56, 57 | sylanbrc 414 |
1
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |