| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inimasn | GIF version | ||
| Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| inimasn | ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3356 | . . 3 ⊢ (𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})) ↔ (𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶}))) | |
| 2 | elin 3356 | . . . . 5 ⊢ (〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵)) | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵))) |
| 4 | vex 2775 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | elimasng 5050 | . . . . 5 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵))) | |
| 6 | 4, 5 | mpan2 425 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵))) |
| 7 | elimasng 5050 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐴)) | |
| 8 | 4, 7 | mpan2 425 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐴)) |
| 9 | elimasng 5050 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐵)) | |
| 10 | 4, 9 | mpan2 425 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐵)) |
| 11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵))) |
| 12 | 3, 6, 11 | 3bitr4rd 221 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}))) |
| 13 | 1, 12 | bitr2id 193 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))) |
| 14 | 13 | eqrdv 2203 | 1 ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 {csn 3633 〈cop 3636 “ cima 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |