![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inimasn | GIF version |
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
inimasn | ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3342 | . . 3 ⊢ (𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})) ↔ (𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶}))) | |
2 | elin 3342 | . . . . 5 ⊢ (〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵)) | |
3 | 2 | a1i 9 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵))) |
4 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | elimasng 5033 | . . . . 5 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵))) | |
6 | 4, 5 | mpan2 425 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ (𝐴 ∩ 𝐵))) |
7 | elimasng 5033 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐴)) | |
8 | 4, 7 | mpan2 425 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐴 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐴)) |
9 | elimasng 5033 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐵)) | |
10 | 4, 9 | mpan2 425 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (𝐵 “ {𝐶}) ↔ 〈𝐶, 𝑥〉 ∈ 𝐵)) |
11 | 8, 10 | anbi12d 473 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ (〈𝐶, 𝑥〉 ∈ 𝐴 ∧ 〈𝐶, 𝑥〉 ∈ 𝐵))) |
12 | 3, 6, 11 | 3bitr4rd 221 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ (𝐴 “ {𝐶}) ∧ 𝑥 ∈ (𝐵 “ {𝐶})) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}))) |
13 | 1, 12 | bitr2id 193 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ ((𝐴 ∩ 𝐵) “ {𝐶}) ↔ 𝑥 ∈ ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))) |
14 | 13 | eqrdv 2191 | 1 ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 {csn 3618 〈cop 3621 “ cima 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |