Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcoeqres | GIF version |
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
funcoeqres | ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcocnv2 5439 | . . . 4 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
2 | 1 | coeq2d 4748 | . . 3 ⊢ (Fun 𝐺 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
3 | coass 5104 | . . . 4 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
4 | 3 | eqcomi 2161 | . . 3 ⊢ (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = ((𝐹 ∘ 𝐺) ∘ ◡𝐺) |
5 | coires1 5103 | . . 3 ⊢ (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺) | |
6 | 2, 4, 5 | 3eqtr3g 2213 | . 2 ⊢ (Fun 𝐺 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
7 | coeq1 4743 | . 2 ⊢ ((𝐹 ∘ 𝐺) = 𝐻 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐻 ∘ ◡𝐺)) | |
8 | 6, 7 | sylan9req 2211 | 1 ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 I cid 4248 ◡ccnv 4585 ran crn 4587 ↾ cres 4588 ∘ ccom 4590 Fun wfun 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-fun 5172 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |