ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcoeqres GIF version

Theorem funcoeqres 5406
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 5400 . . . 4 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
21coeq2d 4709 . . 3 (Fun 𝐺 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
3 coass 5065 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
43eqcomi 2144 . . 3 (𝐹 ∘ (𝐺𝐺)) = ((𝐹𝐺) ∘ 𝐺)
5 coires1 5064 . . 3 (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)
62, 4, 53eqtr3g 2196 . 2 (Fun 𝐺 → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
7 coeq1 4704 . 2 ((𝐹𝐺) = 𝐻 → ((𝐹𝐺) ∘ 𝐺) = (𝐻𝐺))
86, 7sylan9req 2194 1 ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332   I cid 4218  ccnv 4546  ran crn 4548  cres 4549  ccom 4551  Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-fun 5133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator