![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | 1, 2 | sylan9eq 2147 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
4 | 3 | ancoms 265 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-4 1452 ax-17 1471 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 |
This theorem is referenced by: sbcied2 2890 csbied2 2989 fun2ssres 5091 fcoi1 5226 fcoi2 5227 funssfv 5365 caovimo 5876 mpt2mptsx 6005 dmmpt2ssx 6007 fmpt2x 6008 2ndconst 6025 mpt2xopoveq 6043 tfrlemisucaccv 6128 tfr1onlemsucaccv 6144 tfrcllemsucaccv 6157 rdgivallem 6184 nnmass 6288 nnm00 6328 ssenen 6647 exmidfodomrlemim 6924 ltexnqq 7064 ltrnqg 7076 nqnq0a 7110 nqnq0m 7111 nq0m0r 7112 nq0a0 7113 addnqprllem 7183 addnqprulem 7184 rereceu 7521 addid0 7948 nnnn0addcl 8801 zindd 8963 qaddcl 9219 qmulcl 9221 qreccl 9226 xaddpnf1 9412 xaddmnf1 9414 xaddnemnf 9423 xaddnepnf 9424 xaddcom 9427 xnegdi 9434 xaddass 9435 xpncan 9437 xleadd1a 9439 xltadd1 9442 xlt2add 9446 modfzo0difsn 9951 frec2uzrdg 9965 expp1 10077 expnegap0 10078 expcllem 10081 mulexp 10109 expmul 10115 sqoddm1div8 10221 bcpasc 10289 hashfzo 10345 shftfn 10373 reim0b 10411 cjexp 10442 sumsnf 10952 binomlem 11026 ef0lem 11099 dvdsnegb 11240 m1expe 11326 m1expo 11327 m1exp1 11328 flodddiv4 11361 gcdabs 11406 bezoutr1 11449 dvdslcm 11478 lcmeq0 11480 lcmcl 11481 lcmabs 11485 lcmgcdlem 11486 lcmdvds 11488 mulgcddvds 11503 qredeu 11506 divgcdcoprmex 11511 isxmet2d 12134 blfvalps 12171 blssioo 12319 |
Copyright terms: Public domain | W3C validator |