| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylan9eq 2249 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: sbcied2 3027 csbied2 3132 fun2ssres 5302 fcoi1 5441 fcoi2 5442 funssfv 5587 caovimo 6121 mpomptsx 6264 dmmpossx 6266 fmpox 6267 2ndconst 6289 mpoxopoveq 6307 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 rdgivallem 6448 nnmass 6554 nnm00 6597 ssenen 6921 fi0 7050 nnnninf2 7202 nnnninfeq2 7204 exmidfodomrlemim 7282 ltexnqq 7494 ltrnqg 7506 nqnq0a 7540 nqnq0m 7541 nq0m0r 7542 nq0a0 7543 addnqprllem 7613 addnqprulem 7614 map2psrprg 7891 rereceu 7975 addid0 8418 nnnn0addcl 9298 zindd 9463 qaddcl 9728 qmulcl 9730 qreccl 9735 xaddpnf1 9940 xaddmnf1 9942 xaddnemnf 9951 xaddnepnf 9952 xaddcom 9955 xnegdi 9962 xaddass 9963 xpncan 9965 xleadd1a 9967 xltadd1 9970 xlt2add 9974 modfzo0difsn 10506 frec2uzrdg 10520 seqf1oglem2 10631 expp1 10657 expnegap0 10658 expcllem 10661 mulexp 10689 expmul 10695 sqoddm1div8 10804 bcpasc 10877 hashfzo 10933 shftfn 11008 reim0b 11046 cjexp 11077 sumsnf 11593 binomlem 11667 prodsnf 11776 ef0lem 11844 dvdsnegb 11992 m1expe 12083 m1expo 12084 m1exp1 12085 flodddiv4 12120 gcdabs 12182 bezoutr1 12227 dvdslcm 12264 lcmeq0 12266 lcmcl 12267 lcmabs 12271 lcmgcdlem 12272 lcmdvds 12274 mulgcddvds 12289 qredeu 12292 divgcdcoprmex 12297 pcge0 12509 pcgcd1 12524 pcadd 12536 pcmpt2 12540 mulgfvalg 13329 mulgnn0subcl 13343 mulgnn0z 13357 f1ghm0to0 13480 srgmulgass 13623 srgpcomp 13624 ringinvnzdiv 13684 lmodvsmmulgdi 13957 znval 14270 mplvalcoe 14324 isxmet2d 14692 blfvalps 14729 blssioo 14897 efper 15151 relogbcxpbap 15309 logbgcd1irr 15311 lgsdir 15384 lgsne0 15387 lgsdirnn0 15396 lgsdinn0 15397 lgsquadlem2 15427 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2lgslem3a1 15446 2lgslem3b1 15447 2lgslem3c1 15448 2lgslem3d1 15449 trirec0xor 15802 |
| Copyright terms: Public domain | W3C validator |