| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylan9eq 2282 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: sbcied2 3066 csbied2 3172 fun2ssres 5361 fcoi1 5508 fcoi2 5509 funssfv 5655 caovimo 6205 mpomptsx 6349 dmmpossx 6351 fmpox 6352 2ndconst 6374 mpoxopoveq 6392 tfrlemisucaccv 6477 tfr1onlemsucaccv 6493 tfrcllemsucaccv 6506 rdgivallem 6533 nnmass 6641 nnm00 6684 ssenen 7020 fi0 7150 nnnninf2 7302 nnnninfeq2 7304 exmidfodomrlemim 7387 ltexnqq 7603 ltrnqg 7615 nqnq0a 7649 nqnq0m 7650 nq0m0r 7651 nq0a0 7652 addnqprllem 7722 addnqprulem 7723 map2psrprg 8000 rereceu 8084 addid0 8527 nnnn0addcl 9407 zindd 9573 qaddcl 9838 qmulcl 9840 qreccl 9845 xaddpnf1 10050 xaddmnf1 10052 xaddnemnf 10061 xaddnepnf 10062 xaddcom 10065 xnegdi 10072 xaddass 10073 xpncan 10075 xleadd1a 10077 xltadd1 10080 xlt2add 10084 modfzo0difsn 10625 frec2uzrdg 10639 seqf1oglem2 10750 expp1 10776 expnegap0 10777 expcllem 10780 mulexp 10808 expmul 10814 sqoddm1div8 10923 bcpasc 10996 hashfzo 11052 lsw0 11127 ccatval1 11140 ccatval2 11141 swrdval 11188 ccatopth 11256 reuccatpfxs1 11287 shftfn 11343 reim0b 11381 cjexp 11412 sumsnf 11928 binomlem 12002 prodsnf 12111 ef0lem 12179 dvdsnegb 12327 m1expe 12418 m1expo 12419 m1exp1 12420 flodddiv4 12455 gcdabs 12517 bezoutr1 12562 dvdslcm 12599 lcmeq0 12601 lcmcl 12602 lcmabs 12606 lcmgcdlem 12607 lcmdvds 12609 mulgcddvds 12624 qredeu 12627 divgcdcoprmex 12632 pcge0 12844 pcgcd1 12859 pcadd 12871 pcmpt2 12875 mulgfvalg 13666 mulgnn0subcl 13680 mulgnn0z 13694 f1ghm0to0 13817 srgmulgass 13960 srgpcomp 13961 ringinvnzdiv 14021 lmodvsmmulgdi 14295 znval 14608 mplvalcoe 14662 isxmet2d 15030 blfvalps 15067 blssioo 15235 efper 15489 relogbcxpbap 15647 logbgcd1irr 15649 lgsdir 15722 lgsne0 15725 lgsdirnn0 15734 lgsdinn0 15735 lgsquadlem2 15765 2lgslem3a 15780 2lgslem3b 15781 2lgslem3c 15782 2lgslem3d 15783 2lgslem3a1 15784 2lgslem3b1 15785 2lgslem3c1 15786 2lgslem3d1 15787 wlklenvm1 16062 wlklenvm1g 16063 wlk0prc 16093 trirec0xor 16443 |
| Copyright terms: Public domain | W3C validator |