Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | 1, 2 | sylan9eq 2223 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
4 | 3 | ancoms 266 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: sbcied2 2992 csbied2 3096 fun2ssres 5241 fcoi1 5378 fcoi2 5379 funssfv 5522 caovimo 6046 mpomptsx 6176 dmmpossx 6178 fmpox 6179 2ndconst 6201 mpoxopoveq 6219 tfrlemisucaccv 6304 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 rdgivallem 6360 nnmass 6466 nnm00 6509 ssenen 6829 fi0 6952 nnnninf2 7103 nnnninfeq2 7105 exmidfodomrlemim 7178 ltexnqq 7370 ltrnqg 7382 nqnq0a 7416 nqnq0m 7417 nq0m0r 7418 nq0a0 7419 addnqprllem 7489 addnqprulem 7490 map2psrprg 7767 rereceu 7851 addid0 8292 nnnn0addcl 9165 zindd 9330 qaddcl 9594 qmulcl 9596 qreccl 9601 xaddpnf1 9803 xaddmnf1 9805 xaddnemnf 9814 xaddnepnf 9815 xaddcom 9818 xnegdi 9825 xaddass 9826 xpncan 9828 xleadd1a 9830 xltadd1 9833 xlt2add 9837 modfzo0difsn 10351 frec2uzrdg 10365 expp1 10483 expnegap0 10484 expcllem 10487 mulexp 10515 expmul 10521 sqoddm1div8 10629 bcpasc 10700 hashfzo 10757 shftfn 10788 reim0b 10826 cjexp 10857 sumsnf 11372 binomlem 11446 prodsnf 11555 ef0lem 11623 dvdsnegb 11770 m1expe 11858 m1expo 11859 m1exp1 11860 flodddiv4 11893 gcdabs 11943 bezoutr1 11988 dvdslcm 12023 lcmeq0 12025 lcmcl 12026 lcmabs 12030 lcmgcdlem 12031 lcmdvds 12033 mulgcddvds 12048 qredeu 12051 divgcdcoprmex 12056 pcge0 12266 pcgcd1 12281 pcadd 12293 pcmpt2 12296 isxmet2d 13142 blfvalps 13179 blssioo 13339 efper 13522 relogbcxpbap 13677 logbgcd1irr 13679 lgsdir 13730 lgsne0 13733 lgsdirnn0 13742 lgsdinn0 13743 trirec0xor 14077 |
Copyright terms: Public domain | W3C validator |