Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | 1, 2 | sylan9eq 2218 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
4 | 3 | ancoms 266 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: sbcied2 2987 csbied2 3091 fun2ssres 5230 fcoi1 5367 fcoi2 5368 funssfv 5511 caovimo 6031 mpomptsx 6162 dmmpossx 6164 fmpox 6165 2ndconst 6186 mpoxopoveq 6204 tfrlemisucaccv 6289 tfr1onlemsucaccv 6305 tfrcllemsucaccv 6318 rdgivallem 6345 nnmass 6451 nnm00 6493 ssenen 6813 fi0 6936 nnnninf2 7087 nnnninfeq2 7089 exmidfodomrlemim 7153 ltexnqq 7345 ltrnqg 7357 nqnq0a 7391 nqnq0m 7392 nq0m0r 7393 nq0a0 7394 addnqprllem 7464 addnqprulem 7465 map2psrprg 7742 rereceu 7826 addid0 8267 nnnn0addcl 9140 zindd 9305 qaddcl 9569 qmulcl 9571 qreccl 9576 xaddpnf1 9778 xaddmnf1 9780 xaddnemnf 9789 xaddnepnf 9790 xaddcom 9793 xnegdi 9800 xaddass 9801 xpncan 9803 xleadd1a 9805 xltadd1 9808 xlt2add 9812 modfzo0difsn 10326 frec2uzrdg 10340 expp1 10458 expnegap0 10459 expcllem 10462 mulexp 10490 expmul 10496 sqoddm1div8 10604 bcpasc 10675 hashfzo 10731 shftfn 10762 reim0b 10800 cjexp 10831 sumsnf 11346 binomlem 11420 prodsnf 11529 ef0lem 11597 dvdsnegb 11744 m1expe 11832 m1expo 11833 m1exp1 11834 flodddiv4 11867 gcdabs 11917 bezoutr1 11962 dvdslcm 11997 lcmeq0 11999 lcmcl 12000 lcmabs 12004 lcmgcdlem 12005 lcmdvds 12007 mulgcddvds 12022 qredeu 12025 divgcdcoprmex 12030 pcge0 12240 pcgcd1 12255 pcadd 12267 pcmpt2 12270 isxmet2d 12948 blfvalps 12985 blssioo 13145 efper 13328 relogbcxpbap 13483 logbgcd1irr 13485 lgsdir 13536 lgsne0 13539 lgsdirnn0 13548 lgsdinn0 13549 trirec0xor 13884 |
Copyright terms: Public domain | W3C validator |