| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylan9eq 2249 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: sbcied2 3027 csbied2 3132 fun2ssres 5301 fcoi1 5438 fcoi2 5439 funssfv 5584 caovimo 6117 mpomptsx 6255 dmmpossx 6257 fmpox 6258 2ndconst 6280 mpoxopoveq 6298 tfrlemisucaccv 6383 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 rdgivallem 6439 nnmass 6545 nnm00 6588 ssenen 6912 fi0 7041 nnnninf2 7193 nnnninfeq2 7195 exmidfodomrlemim 7268 ltexnqq 7475 ltrnqg 7487 nqnq0a 7521 nqnq0m 7522 nq0m0r 7523 nq0a0 7524 addnqprllem 7594 addnqprulem 7595 map2psrprg 7872 rereceu 7956 addid0 8399 nnnn0addcl 9279 zindd 9444 qaddcl 9709 qmulcl 9711 qreccl 9716 xaddpnf1 9921 xaddmnf1 9923 xaddnemnf 9932 xaddnepnf 9933 xaddcom 9936 xnegdi 9943 xaddass 9944 xpncan 9946 xleadd1a 9948 xltadd1 9951 xlt2add 9955 modfzo0difsn 10487 frec2uzrdg 10501 seqf1oglem2 10612 expp1 10638 expnegap0 10639 expcllem 10642 mulexp 10670 expmul 10676 sqoddm1div8 10785 bcpasc 10858 hashfzo 10914 shftfn 10989 reim0b 11027 cjexp 11058 sumsnf 11574 binomlem 11648 prodsnf 11757 ef0lem 11825 dvdsnegb 11973 m1expe 12064 m1expo 12065 m1exp1 12066 flodddiv4 12101 gcdabs 12155 bezoutr1 12200 dvdslcm 12237 lcmeq0 12239 lcmcl 12240 lcmabs 12244 lcmgcdlem 12245 lcmdvds 12247 mulgcddvds 12262 qredeu 12265 divgcdcoprmex 12270 pcge0 12482 pcgcd1 12497 pcadd 12509 pcmpt2 12513 mulgfvalg 13251 mulgnn0subcl 13265 mulgnn0z 13279 f1ghm0to0 13402 srgmulgass 13545 srgpcomp 13546 ringinvnzdiv 13606 lmodvsmmulgdi 13879 znval 14192 isxmet2d 14584 blfvalps 14621 blssioo 14789 efper 15043 relogbcxpbap 15201 logbgcd1irr 15203 lgsdir 15276 lgsne0 15279 lgsdirnn0 15288 lgsdinn0 15289 lgsquadlem2 15319 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgslem3d1 15341 trirec0xor 15689 |
| Copyright terms: Public domain | W3C validator |