![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | 1, 2 | sylan9eq 2246 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: sbcied2 3023 csbied2 3128 fun2ssres 5297 fcoi1 5434 fcoi2 5435 funssfv 5580 caovimo 6112 mpomptsx 6250 dmmpossx 6252 fmpox 6253 2ndconst 6275 mpoxopoveq 6293 tfrlemisucaccv 6378 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 rdgivallem 6434 nnmass 6540 nnm00 6583 ssenen 6907 fi0 7034 nnnninf2 7186 nnnninfeq2 7188 exmidfodomrlemim 7261 ltexnqq 7468 ltrnqg 7480 nqnq0a 7514 nqnq0m 7515 nq0m0r 7516 nq0a0 7517 addnqprllem 7587 addnqprulem 7588 map2psrprg 7865 rereceu 7949 addid0 8392 nnnn0addcl 9270 zindd 9435 qaddcl 9700 qmulcl 9702 qreccl 9707 xaddpnf1 9912 xaddmnf1 9914 xaddnemnf 9923 xaddnepnf 9924 xaddcom 9927 xnegdi 9934 xaddass 9935 xpncan 9937 xleadd1a 9939 xltadd1 9942 xlt2add 9946 modfzo0difsn 10466 frec2uzrdg 10480 seqf1oglem2 10591 expp1 10617 expnegap0 10618 expcllem 10621 mulexp 10649 expmul 10655 sqoddm1div8 10764 bcpasc 10837 hashfzo 10893 shftfn 10968 reim0b 11006 cjexp 11037 sumsnf 11552 binomlem 11626 prodsnf 11735 ef0lem 11803 dvdsnegb 11951 m1expe 12040 m1expo 12041 m1exp1 12042 flodddiv4 12075 gcdabs 12125 bezoutr1 12170 dvdslcm 12207 lcmeq0 12209 lcmcl 12210 lcmabs 12214 lcmgcdlem 12215 lcmdvds 12217 mulgcddvds 12232 qredeu 12235 divgcdcoprmex 12240 pcge0 12451 pcgcd1 12466 pcadd 12478 pcmpt2 12482 mulgfvalg 13191 mulgnn0subcl 13205 mulgnn0z 13219 f1ghm0to0 13342 srgmulgass 13485 srgpcomp 13486 ringinvnzdiv 13546 lmodvsmmulgdi 13819 znval 14124 isxmet2d 14516 blfvalps 14553 blssioo 14713 efper 14942 relogbcxpbap 15097 logbgcd1irr 15099 lgsdir 15151 lgsne0 15154 lgsdirnn0 15163 lgsdinn0 15164 trirec0xor 15535 |
Copyright terms: Public domain | W3C validator |