| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylan9eq 2282 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: sbcied2 3066 csbied2 3172 fun2ssres 5357 fcoi1 5502 fcoi2 5503 funssfv 5649 caovimo 6190 mpomptsx 6333 dmmpossx 6335 fmpox 6336 2ndconst 6358 mpoxopoveq 6376 tfrlemisucaccv 6461 tfr1onlemsucaccv 6477 tfrcllemsucaccv 6490 rdgivallem 6517 nnmass 6623 nnm00 6666 ssenen 7000 fi0 7130 nnnninf2 7282 nnnninfeq2 7284 exmidfodomrlemim 7367 ltexnqq 7583 ltrnqg 7595 nqnq0a 7629 nqnq0m 7630 nq0m0r 7631 nq0a0 7632 addnqprllem 7702 addnqprulem 7703 map2psrprg 7980 rereceu 8064 addid0 8507 nnnn0addcl 9387 zindd 9553 qaddcl 9818 qmulcl 9820 qreccl 9825 xaddpnf1 10030 xaddmnf1 10032 xaddnemnf 10041 xaddnepnf 10042 xaddcom 10045 xnegdi 10052 xaddass 10053 xpncan 10055 xleadd1a 10057 xltadd1 10060 xlt2add 10064 modfzo0difsn 10604 frec2uzrdg 10618 seqf1oglem2 10729 expp1 10755 expnegap0 10756 expcllem 10759 mulexp 10787 expmul 10793 sqoddm1div8 10902 bcpasc 10975 hashfzo 11031 lsw0 11105 ccatval1 11118 ccatval2 11119 swrdval 11166 ccatopth 11234 reuccatpfxs1 11265 shftfn 11321 reim0b 11359 cjexp 11390 sumsnf 11906 binomlem 11980 prodsnf 12089 ef0lem 12157 dvdsnegb 12305 m1expe 12396 m1expo 12397 m1exp1 12398 flodddiv4 12433 gcdabs 12495 bezoutr1 12540 dvdslcm 12577 lcmeq0 12579 lcmcl 12580 lcmabs 12584 lcmgcdlem 12585 lcmdvds 12587 mulgcddvds 12602 qredeu 12605 divgcdcoprmex 12610 pcge0 12822 pcgcd1 12837 pcadd 12849 pcmpt2 12853 mulgfvalg 13644 mulgnn0subcl 13658 mulgnn0z 13672 f1ghm0to0 13795 srgmulgass 13938 srgpcomp 13939 ringinvnzdiv 13999 lmodvsmmulgdi 14272 znval 14585 mplvalcoe 14639 isxmet2d 15007 blfvalps 15044 blssioo 15212 efper 15466 relogbcxpbap 15624 logbgcd1irr 15626 lgsdir 15699 lgsne0 15702 lgsdirnn0 15711 lgsdinn0 15712 lgsquadlem2 15742 2lgslem3a 15757 2lgslem3b 15758 2lgslem3c 15759 2lgslem3d 15760 2lgslem3a1 15761 2lgslem3b1 15762 2lgslem3c1 15763 2lgslem3d1 15764 trirec0xor 16344 |
| Copyright terms: Public domain | W3C validator |