Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | 1, 2 | sylan9eq 2228 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: sbcied2 2998 csbied2 3102 fun2ssres 5251 fcoi1 5388 fcoi2 5389 funssfv 5533 caovimo 6058 mpomptsx 6188 dmmpossx 6190 fmpox 6191 2ndconst 6213 mpoxopoveq 6231 tfrlemisucaccv 6316 tfr1onlemsucaccv 6332 tfrcllemsucaccv 6345 rdgivallem 6372 nnmass 6478 nnm00 6521 ssenen 6841 fi0 6964 nnnninf2 7115 nnnninfeq2 7117 exmidfodomrlemim 7190 ltexnqq 7382 ltrnqg 7394 nqnq0a 7428 nqnq0m 7429 nq0m0r 7430 nq0a0 7431 addnqprllem 7501 addnqprulem 7502 map2psrprg 7779 rereceu 7863 addid0 8304 nnnn0addcl 9179 zindd 9344 qaddcl 9608 qmulcl 9610 qreccl 9615 xaddpnf1 9817 xaddmnf1 9819 xaddnemnf 9828 xaddnepnf 9829 xaddcom 9832 xnegdi 9839 xaddass 9840 xpncan 9842 xleadd1a 9844 xltadd1 9847 xlt2add 9851 modfzo0difsn 10365 frec2uzrdg 10379 expp1 10497 expnegap0 10498 expcllem 10501 mulexp 10529 expmul 10535 sqoddm1div8 10643 bcpasc 10714 hashfzo 10770 shftfn 10801 reim0b 10839 cjexp 10870 sumsnf 11385 binomlem 11459 prodsnf 11568 ef0lem 11636 dvdsnegb 11783 m1expe 11871 m1expo 11872 m1exp1 11873 flodddiv4 11906 gcdabs 11956 bezoutr1 12001 dvdslcm 12036 lcmeq0 12038 lcmcl 12039 lcmabs 12043 lcmgcdlem 12044 lcmdvds 12046 mulgcddvds 12061 qredeu 12064 divgcdcoprmex 12069 pcge0 12279 pcgcd1 12294 pcadd 12306 pcmpt2 12309 mulgfvalg 12855 mulgnn0subcl 12866 mulgnn0z 12879 srgmulgass 12978 srgpcomp 12979 ringinvnzdiv 13032 isxmet2d 13428 blfvalps 13465 blssioo 13625 efper 13808 relogbcxpbap 13963 logbgcd1irr 13965 lgsdir 14016 lgsne0 14019 lgsdirnn0 14028 lgsdinn0 14029 trirec0xor 14363 |
Copyright terms: Public domain | W3C validator |