| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| sylan9eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eqr.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eqr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eqr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eqr.2 | . . 3 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylan9eq 2249 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: sbcied2 3027 csbied2 3132 fun2ssres 5302 fcoi1 5441 fcoi2 5442 funssfv 5587 caovimo 6121 mpomptsx 6264 dmmpossx 6266 fmpox 6267 2ndconst 6289 mpoxopoveq 6307 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 rdgivallem 6448 nnmass 6554 nnm00 6597 ssenen 6921 fi0 7050 nnnninf2 7202 nnnninfeq2 7204 exmidfodomrlemim 7280 ltexnqq 7492 ltrnqg 7504 nqnq0a 7538 nqnq0m 7539 nq0m0r 7540 nq0a0 7541 addnqprllem 7611 addnqprulem 7612 map2psrprg 7889 rereceu 7973 addid0 8416 nnnn0addcl 9296 zindd 9461 qaddcl 9726 qmulcl 9728 qreccl 9733 xaddpnf1 9938 xaddmnf1 9940 xaddnemnf 9949 xaddnepnf 9950 xaddcom 9953 xnegdi 9960 xaddass 9961 xpncan 9963 xleadd1a 9965 xltadd1 9968 xlt2add 9972 modfzo0difsn 10504 frec2uzrdg 10518 seqf1oglem2 10629 expp1 10655 expnegap0 10656 expcllem 10659 mulexp 10687 expmul 10693 sqoddm1div8 10802 bcpasc 10875 hashfzo 10931 shftfn 11006 reim0b 11044 cjexp 11075 sumsnf 11591 binomlem 11665 prodsnf 11774 ef0lem 11842 dvdsnegb 11990 m1expe 12081 m1expo 12082 m1exp1 12083 flodddiv4 12118 gcdabs 12180 bezoutr1 12225 dvdslcm 12262 lcmeq0 12264 lcmcl 12265 lcmabs 12269 lcmgcdlem 12270 lcmdvds 12272 mulgcddvds 12287 qredeu 12290 divgcdcoprmex 12295 pcge0 12507 pcgcd1 12522 pcadd 12534 pcmpt2 12538 mulgfvalg 13327 mulgnn0subcl 13341 mulgnn0z 13355 f1ghm0to0 13478 srgmulgass 13621 srgpcomp 13622 ringinvnzdiv 13682 lmodvsmmulgdi 13955 znval 14268 isxmet2d 14668 blfvalps 14705 blssioo 14873 efper 15127 relogbcxpbap 15285 logbgcd1irr 15287 lgsdir 15360 lgsne0 15363 lgsdirnn0 15372 lgsdinn0 15373 lgsquadlem2 15403 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2lgslem3a1 15422 2lgslem3b1 15423 2lgslem3c1 15424 2lgslem3d1 15425 trirec0xor 15776 |
| Copyright terms: Public domain | W3C validator |