ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvunsng GIF version

Theorem fvunsng 5752
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
Assertion
Ref Expression
fvunsng ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))

Proof of Theorem fvunsng
StepHypRef Expression
1 snidg 3647 . . . 4 (𝐷𝑉𝐷 ∈ {𝐷})
2 fvres 5578 . . . 4 (𝐷 ∈ {𝐷} → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
31, 2syl 14 . . 3 (𝐷𝑉 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
4 resundir 4956 . . . . 5 ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷}))
5 elsni 3636 . . . . . . . . 9 (𝐵 ∈ {𝐷} → 𝐵 = 𝐷)
65necon3ai 2413 . . . . . . . 8 (𝐵𝐷 → ¬ 𝐵 ∈ {𝐷})
7 ressnop0 5739 . . . . . . . 8 𝐵 ∈ {𝐷} → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
86, 7syl 14 . . . . . . 7 (𝐵𝐷 → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
98uneq2d 3313 . . . . . 6 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅))
10 un0 3480 . . . . . 6 ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷})
119, 10eqtrdi 2242 . . . . 5 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = (𝐴 ↾ {𝐷}))
124, 11eqtrid 2238 . . . 4 (𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = (𝐴 ↾ {𝐷}))
1312fveq1d 5556 . . 3 (𝐵𝐷 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
143, 13sylan9req 2247 . 2 ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
15 fvres 5578 . . . 4 (𝐷 ∈ {𝐷} → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
161, 15syl 14 . . 3 (𝐷𝑉 → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1716adantr 276 . 2 ((𝐷𝑉𝐵𝐷) → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1814, 17eqtrd 2226 1 ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  cun 3151  c0 3446  {csn 3618  cop 3621  cres 4661  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-res 4671  df-iota 5215  df-fv 5262
This theorem is referenced by:  fvpr1  5762  fvpr1g  5764  fvpr2g  5765  fvtp1g  5766  tfrlemisucaccv  6378  tfr1onlemsucaccv  6394  tfrcllemsucaccv  6407  ac6sfi  6954  0tonninf  10511  1tonninf  10512  hashennn  10851  zfz1isolemiso  10910  nninfctlemfo  12177
  Copyright terms: Public domain W3C validator