| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvunsng | GIF version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.) |
| Ref | Expression |
|---|---|
| fvunsng | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 3695 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ {𝐷}) | |
| 2 | fvres 5650 | . . . 4 ⊢ (𝐷 ∈ {𝐷} → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
| 4 | resundir 5018 | . . . . 5 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
| 5 | elsni 3684 | . . . . . . . . 9 ⊢ (𝐵 ∈ {𝐷} → 𝐵 = 𝐷) | |
| 6 | 5 | necon3ai 2449 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) |
| 7 | ressnop0 5819 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
| 8 | 6, 7 | syl 14 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
| 9 | 8 | uneq2d 3358 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
| 10 | un0 3525 | . . . . . 6 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
| 11 | 9, 10 | eqtrdi 2278 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
| 12 | 4, 11 | eqtrid 2274 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
| 13 | 12 | fveq1d 5628 | . . 3 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
| 14 | 3, 13 | sylan9req 2283 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
| 15 | fvres 5650 | . . . 4 ⊢ (𝐷 ∈ {𝐷} → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
| 16 | 1, 15 | syl 14 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
| 17 | 16 | adantr 276 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
| 18 | 14, 17 | eqtrd 2262 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∪ cun 3195 ∅c0 3491 {csn 3666 〈cop 3669 ↾ cres 4720 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-res 4730 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fvpr1 5842 fvpr1g 5844 fvpr2g 5845 fvtp1g 5846 tfrlemisucaccv 6469 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 ac6sfi 7056 0tonninf 10657 1tonninf 10658 hashennn 10997 zfz1isolemiso 11056 cats1un 11248 nninfctlemfo 12556 |
| Copyright terms: Public domain | W3C validator |