| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvunsng | GIF version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.) |
| Ref | Expression |
|---|---|
| fvunsng | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 3652 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ {𝐷}) | |
| 2 | fvres 5585 | . . . 4 ⊢ (𝐷 ∈ {𝐷} → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
| 4 | resundir 4961 | . . . . 5 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
| 5 | elsni 3641 | . . . . . . . . 9 ⊢ (𝐵 ∈ {𝐷} → 𝐵 = 𝐷) | |
| 6 | 5 | necon3ai 2416 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) |
| 7 | ressnop0 5746 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
| 8 | 6, 7 | syl 14 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
| 9 | 8 | uneq2d 3318 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
| 10 | un0 3485 | . . . . . 6 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
| 11 | 9, 10 | eqtrdi 2245 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
| 12 | 4, 11 | eqtrid 2241 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
| 13 | 12 | fveq1d 5563 | . . 3 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
| 14 | 3, 13 | sylan9req 2250 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
| 15 | fvres 5585 | . . . 4 ⊢ (𝐷 ∈ {𝐷} → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
| 16 | 1, 15 | syl 14 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
| 17 | 16 | adantr 276 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
| 18 | 14, 17 | eqtrd 2229 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∪ cun 3155 ∅c0 3451 {csn 3623 〈cop 3626 ↾ cres 4666 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-res 4676 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fvpr1 5769 fvpr1g 5771 fvpr2g 5772 fvtp1g 5773 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 ac6sfi 6968 0tonninf 10549 1tonninf 10550 hashennn 10889 zfz1isolemiso 10948 nninfctlemfo 12232 |
| Copyright terms: Public domain | W3C validator |