![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvunsng | GIF version |
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.) |
Ref | Expression |
---|---|
fvunsng | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3493 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ {𝐷}) | |
2 | fvres 5364 | . . . 4 ⊢ (𝐷 ∈ {𝐷} → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
4 | resundir 4759 | . . . . 5 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
5 | elsni 3484 | . . . . . . . . 9 ⊢ (𝐵 ∈ {𝐷} → 𝐵 = 𝐷) | |
6 | 5 | necon3ai 2311 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) |
7 | ressnop0 5517 | . . . . . . . 8 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
8 | 6, 7 | syl 14 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
9 | 8 | uneq2d 3169 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
10 | un0 3335 | . . . . . 6 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
11 | 9, 10 | syl6eq 2143 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
12 | 4, 11 | syl5eq 2139 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
13 | 12 | fveq1d 5342 | . . 3 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
14 | 3, 13 | sylan9req 2148 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
15 | fvres 5364 | . . . 4 ⊢ (𝐷 ∈ {𝐷} → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
16 | 1, 15 | syl 14 | . . 3 ⊢ (𝐷 ∈ 𝑉 → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
17 | 16 | adantr 271 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
18 | 14, 17 | eqtrd 2127 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ≠ wne 2262 ∪ cun 3011 ∅c0 3302 {csn 3466 〈cop 3469 ↾ cres 4469 ‘cfv 5049 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-res 4479 df-iota 5014 df-fv 5057 |
This theorem is referenced by: fvpr1 5540 fvpr1g 5542 fvpr2g 5543 fvtp1g 5544 tfrlemisucaccv 6128 tfr1onlemsucaccv 6144 tfrcllemsucaccv 6157 ac6sfi 6694 0tonninf 9994 1tonninf 9995 hashennn 10319 zfz1isolemiso 10375 |
Copyright terms: Public domain | W3C validator |