ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvunsng GIF version

Theorem fvunsng 5791
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
Assertion
Ref Expression
fvunsng ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))

Proof of Theorem fvunsng
StepHypRef Expression
1 snidg 3667 . . . 4 (𝐷𝑉𝐷 ∈ {𝐷})
2 fvres 5613 . . . 4 (𝐷 ∈ {𝐷} → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
31, 2syl 14 . . 3 (𝐷𝑉 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
4 resundir 4982 . . . . 5 ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷}))
5 elsni 3656 . . . . . . . . 9 (𝐵 ∈ {𝐷} → 𝐵 = 𝐷)
65necon3ai 2426 . . . . . . . 8 (𝐵𝐷 → ¬ 𝐵 ∈ {𝐷})
7 ressnop0 5778 . . . . . . . 8 𝐵 ∈ {𝐷} → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
86, 7syl 14 . . . . . . 7 (𝐵𝐷 → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
98uneq2d 3331 . . . . . 6 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅))
10 un0 3498 . . . . . 6 ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷})
119, 10eqtrdi 2255 . . . . 5 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = (𝐴 ↾ {𝐷}))
124, 11eqtrid 2251 . . . 4 (𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = (𝐴 ↾ {𝐷}))
1312fveq1d 5591 . . 3 (𝐵𝐷 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
143, 13sylan9req 2260 . 2 ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
15 fvres 5613 . . . 4 (𝐷 ∈ {𝐷} → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
161, 15syl 14 . . 3 (𝐷𝑉 → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1716adantr 276 . 2 ((𝐷𝑉𝐵𝐷) → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1814, 17eqtrd 2239 1 ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  wne 2377  cun 3168  c0 3464  {csn 3638  cop 3641  cres 4685  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-res 4695  df-iota 5241  df-fv 5288
This theorem is referenced by:  fvpr1  5801  fvpr1g  5803  fvpr2g  5804  fvtp1g  5805  tfrlemisucaccv  6424  tfr1onlemsucaccv  6440  tfrcllemsucaccv  6453  ac6sfi  7010  0tonninf  10607  1tonninf  10608  hashennn  10947  zfz1isolemiso  11006  cats1un  11197  nninfctlemfo  12436
  Copyright terms: Public domain W3C validator