| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlemeq | GIF version | ||
| Description: Lemma for addlocpr 7648. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| Ref | Expression |
|---|---|
| addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
| addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
| addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
| addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
| addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
| addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
| addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
| addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
| addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
| addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
| addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
| Ref | Expression |
|---|---|
| addlocprlemeq | ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
| 2 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
| 3 | addlocprlem.qr | . . . . . 6 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
| 4 | addlocprlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Q) | |
| 5 | addlocprlem.qppr | . . . . . 6 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
| 6 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
| 7 | addlocprlem.uup | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
| 8 | addlocprlem.du | . . . . . 6 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
| 9 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
| 10 | addlocprlem.tup | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
| 11 | addlocprlem.et | . . . . . 6 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | addlocprlemeqgt 7644 | . . . . 5 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 14 | oveq1 5950 | . . . . 5 ⊢ (𝑄 = (𝐷 +Q 𝐸) → (𝑄 +Q (𝑃 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) | |
| 15 | 5, 14 | sylan9req 2258 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 16 | 13, 15 | breqtrrd 4071 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q 𝑅) |
| 17 | 1, 7 | jca 306 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴))) |
| 18 | 2, 10 | jca 306 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) |
| 19 | ltrelnq 7477 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
| 20 | 19 | brel 4726 | . . . . . . 7 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
| 21 | 20 | simprd 114 | . . . . . 6 ⊢ (𝑄 <Q 𝑅 → 𝑅 ∈ Q) |
| 22 | 3, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Q) |
| 23 | addnqpru 7642 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) ∧ 𝑅 ∈ Q) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
| 24 | 17, 18, 22, 23 | syl21anc 1248 | . . . 4 ⊢ (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 26 | 16, 25 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))) |
| 27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 1st c1st 6223 2nd c2nd 6224 Qcnq 7392 +Q cplq 7394 <Q cltq 7397 Pcnp 7403 +P cpp 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-inp 7578 df-iplp 7580 |
| This theorem is referenced by: addlocprlem 7647 |
| Copyright terms: Public domain | W3C validator |