![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlemeq | GIF version |
Description: Lemma for addlocpr 7016. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeq | ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
2 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
3 | addlocprlem.qr | . . . . . 6 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
4 | addlocprlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Q) | |
5 | addlocprlem.qppr | . . . . . 6 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
6 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
7 | addlocprlem.uup | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
8 | addlocprlem.du | . . . . . 6 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
9 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
10 | addlocprlem.tup | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
11 | addlocprlem.et | . . . . . 6 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | addlocprlemeqgt 7012 | . . . . 5 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
13 | 12 | adantr 270 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
14 | oveq1 5601 | . . . . 5 ⊢ (𝑄 = (𝐷 +Q 𝐸) → (𝑄 +Q (𝑃 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) | |
15 | 5, 14 | sylan9req 2138 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
16 | 13, 15 | breqtrrd 3840 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q 𝑅) |
17 | 1, 7 | jca 300 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴))) |
18 | 2, 10 | jca 300 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) |
19 | ltrelnq 6845 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
20 | 19 | brel 4451 | . . . . . . 7 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
21 | 20 | simprd 112 | . . . . . 6 ⊢ (𝑄 <Q 𝑅 → 𝑅 ∈ Q) |
22 | 3, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Q) |
23 | addnqpru 7010 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) ∧ 𝑅 ∈ Q) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
24 | 17, 18, 22, 23 | syl21anc 1171 | . . . 4 ⊢ (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
25 | 24 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
26 | 16, 25 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))) |
27 | 26 | ex 113 | 1 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1287 ∈ wcel 1436 class class class wbr 3814 ‘cfv 4972 (class class class)co 5594 1st c1st 5847 2nd c2nd 5848 Qcnq 6760 +Q cplq 6762 <Q cltq 6765 Pcnp 6771 +P cpp 6773 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-coll 3922 ax-sep 3925 ax-nul 3933 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-iinf 4369 |
This theorem depends on definitions: df-bi 115 df-dc 779 df-3or 923 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-ral 2360 df-rex 2361 df-reu 2362 df-rab 2364 df-v 2616 df-sbc 2829 df-csb 2922 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-nul 3273 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-int 3666 df-iun 3709 df-br 3815 df-opab 3869 df-mpt 3870 df-tr 3905 df-eprel 4083 df-id 4087 df-po 4090 df-iso 4091 df-iord 4160 df-on 4162 df-suc 4165 df-iom 4372 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-f1 4977 df-fo 4978 df-f1o 4979 df-fv 4980 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-1st 5849 df-2nd 5850 df-recs 6005 df-irdg 6070 df-1o 6116 df-oadd 6120 df-omul 6121 df-er 6225 df-ec 6227 df-qs 6231 df-ni 6784 df-pli 6785 df-mi 6786 df-lti 6787 df-plpq 6824 df-mpq 6825 df-enq 6827 df-nqqs 6828 df-plqqs 6829 df-mqqs 6830 df-1nqqs 6831 df-rq 6832 df-ltnqqs 6833 df-inp 6946 df-iplp 6948 |
This theorem is referenced by: addlocprlem 7015 |
Copyright terms: Public domain | W3C validator |