ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeq GIF version

Theorem addlocprlemeq 7593
Description: Lemma for addlocpr 7596. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemeq (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlemeq
StepHypRef Expression
1 addlocprlem.a . . . . . 6 (𝜑𝐴P)
2 addlocprlem.b . . . . . 6 (𝜑𝐵P)
3 addlocprlem.qr . . . . . 6 (𝜑𝑄 <Q 𝑅)
4 addlocprlem.p . . . . . 6 (𝜑𝑃Q)
5 addlocprlem.qppr . . . . . 6 (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
6 addlocprlem.dlo . . . . . 6 (𝜑𝐷 ∈ (1st𝐴))
7 addlocprlem.uup . . . . . 6 (𝜑𝑈 ∈ (2nd𝐴))
8 addlocprlem.du . . . . . 6 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
9 addlocprlem.elo . . . . . 6 (𝜑𝐸 ∈ (1st𝐵))
10 addlocprlem.tup . . . . . 6 (𝜑𝑇 ∈ (2nd𝐵))
11 addlocprlem.et . . . . . 6 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7592 . . . . 5 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1312adantr 276 . . . 4 ((𝜑𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
14 oveq1 5925 . . . . 5 (𝑄 = (𝐷 +Q 𝐸) → (𝑄 +Q (𝑃 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
155, 14sylan9req 2247 . . . 4 ((𝜑𝑄 = (𝐷 +Q 𝐸)) → 𝑅 = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1613, 15breqtrrd 4057 . . 3 ((𝜑𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q 𝑅)
171, 7jca 306 . . . . 5 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
182, 10jca 306 . . . . 5 (𝜑 → (𝐵P𝑇 ∈ (2nd𝐵)))
19 ltrelnq 7425 . . . . . . . 8 <Q ⊆ (Q × Q)
2019brel 4711 . . . . . . 7 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
2120simprd 114 . . . . . 6 (𝑄 <Q 𝑅𝑅Q)
223, 21syl 14 . . . . 5 (𝜑𝑅Q)
23 addnqpru 7590 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
2417, 18, 22, 23syl21anc 1248 . . . 4 (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
2524adantr 276 . . 3 ((𝜑𝑄 = (𝐷 +Q 𝐸)) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
2616, 25mpd 13 . 2 ((𝜑𝑄 = (𝐷 +Q 𝐸)) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))
2726ex 115 1 (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351   +P cpp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526  df-iplp 7528
This theorem is referenced by:  addlocprlem  7595
  Copyright terms: Public domain W3C validator