![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlemeq | GIF version |
Description: Lemma for addlocpr 7538. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeq | ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
2 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
3 | addlocprlem.qr | . . . . . 6 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
4 | addlocprlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Q) | |
5 | addlocprlem.qppr | . . . . . 6 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
6 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
7 | addlocprlem.uup | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
8 | addlocprlem.du | . . . . . 6 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
9 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
10 | addlocprlem.tup | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
11 | addlocprlem.et | . . . . . 6 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | addlocprlemeqgt 7534 | . . . . 5 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
13 | 12 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
14 | oveq1 5885 | . . . . 5 ⊢ (𝑄 = (𝐷 +Q 𝐸) → (𝑄 +Q (𝑃 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) | |
15 | 5, 14 | sylan9req 2231 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
16 | 13, 15 | breqtrrd 4033 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q 𝑅) |
17 | 1, 7 | jca 306 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴))) |
18 | 2, 10 | jca 306 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) |
19 | ltrelnq 7367 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
20 | 19 | brel 4680 | . . . . . . 7 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
21 | 20 | simprd 114 | . . . . . 6 ⊢ (𝑄 <Q 𝑅 → 𝑅 ∈ Q) |
22 | 3, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Q) |
23 | addnqpru 7532 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) ∧ 𝑅 ∈ Q) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
24 | 17, 18, 22, 23 | syl21anc 1237 | . . . 4 ⊢ (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
26 | 16, 25 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))) |
27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 1st c1st 6142 2nd c2nd 6143 Qcnq 7282 +Q cplq 7284 <Q cltq 7287 Pcnp 7293 +P cpp 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-pli 7307 df-mi 7308 df-lti 7309 df-plpq 7346 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-plqqs 7351 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 df-inp 7468 df-iplp 7470 |
This theorem is referenced by: addlocprlem 7537 |
Copyright terms: Public domain | W3C validator |