Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlocprlemeq | GIF version |
Description: Lemma for addlocpr 7477. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeq | ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
2 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
3 | addlocprlem.qr | . . . . . 6 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
4 | addlocprlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Q) | |
5 | addlocprlem.qppr | . . . . . 6 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
6 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
7 | addlocprlem.uup | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
8 | addlocprlem.du | . . . . . 6 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
9 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
10 | addlocprlem.tup | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
11 | addlocprlem.et | . . . . . 6 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | addlocprlemeqgt 7473 | . . . . 5 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
13 | 12 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
14 | oveq1 5849 | . . . . 5 ⊢ (𝑄 = (𝐷 +Q 𝐸) → (𝑄 +Q (𝑃 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) | |
15 | 5, 14 | sylan9req 2220 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
16 | 13, 15 | breqtrrd 4010 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q 𝑅) |
17 | 1, 7 | jca 304 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴))) |
18 | 2, 10 | jca 304 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) |
19 | ltrelnq 7306 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
20 | 19 | brel 4656 | . . . . . . 7 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
21 | 20 | simprd 113 | . . . . . 6 ⊢ (𝑄 <Q 𝑅 → 𝑅 ∈ Q) |
22 | 3, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Q) |
23 | addnqpru 7471 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) ∧ 𝑅 ∈ Q) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
24 | 17, 18, 22, 23 | syl21anc 1227 | . . . 4 ⊢ (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
25 | 24 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
26 | 16, 25 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))) |
27 | 26 | ex 114 | 1 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 +Q cplq 7223 <Q cltq 7226 Pcnp 7232 +P cpp 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-inp 7407 df-iplp 7409 |
This theorem is referenced by: addlocprlem 7476 |
Copyright terms: Public domain | W3C validator |