| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlemeq | GIF version | ||
| Description: Lemma for addlocpr 7719. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| Ref | Expression |
|---|---|
| addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
| addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
| addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
| addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
| addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
| addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
| addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
| addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
| addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
| addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
| addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
| Ref | Expression |
|---|---|
| addlocprlemeq | ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
| 2 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
| 3 | addlocprlem.qr | . . . . . 6 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
| 4 | addlocprlem.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Q) | |
| 5 | addlocprlem.qppr | . . . . . 6 ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) | |
| 6 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
| 7 | addlocprlem.uup | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
| 8 | addlocprlem.du | . . . . . 6 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
| 9 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
| 10 | addlocprlem.tup | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
| 11 | addlocprlem.et | . . . . . 6 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | addlocprlemeqgt 7715 | . . . . 5 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 14 | oveq1 6007 | . . . . 5 ⊢ (𝑄 = (𝐷 +Q 𝐸) → (𝑄 +Q (𝑃 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) | |
| 15 | 5, 14 | sylan9req 2283 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 16 | 13, 15 | breqtrrd 4110 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → (𝑈 +Q 𝑇) <Q 𝑅) |
| 17 | 1, 7 | jca 306 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴))) |
| 18 | 2, 10 | jca 306 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) |
| 19 | ltrelnq 7548 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
| 20 | 19 | brel 4770 | . . . . . . 7 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
| 21 | 20 | simprd 114 | . . . . . 6 ⊢ (𝑄 <Q 𝑅 → 𝑅 ∈ Q) |
| 22 | 3, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Q) |
| 23 | addnqpru 7713 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵))) ∧ 𝑅 ∈ Q) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
| 24 | 17, 18, 22, 23 | syl21anc 1270 | . . . 4 ⊢ (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → ((𝑈 +Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| 26 | 16, 25 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑄 = (𝐷 +Q 𝐸)) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))) |
| 27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 1st c1st 6282 2nd c2nd 6283 Qcnq 7463 +Q cplq 7465 <Q cltq 7468 Pcnp 7474 +P cpp 7476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-inp 7649 df-iplp 7651 |
| This theorem is referenced by: addlocprlem 7718 |
| Copyright terms: Public domain | W3C validator |