Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm GIF version

Theorem resqrexlemnm 10821
 Description: Lemma for resqrex 10829. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnm (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10810 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5563 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9512 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℝ)
8 resqrexlemnmsq.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
94, 8ffvelrnd 5563 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ+)
109rpred 9512 . . . 4 (𝜑 → (𝐹𝑀) ∈ ℝ)
117, 10resubcld 8166 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ)
127resqcld 10480 . . . . 5 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
1310resqcld 10480 . . . . 5 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1412, 13resubcld 8166 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) ∈ ℝ)
15 2cn 8814 . . . . . . 7 2 ∈ ℂ
16 expm1t 10351 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1715, 5, 16sylancr 411 . . . . . 6 (𝜑 → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
18 2nn 8904 . . . . . . . . 9 2 ∈ ℕ
1918a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
205nnnn0d 9053 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
2119, 20nnexpcld 10476 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
2221nnrpd 9510 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
2317, 22eqeltrrd 2218 . . . . 5 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ+)
2423rpred 9512 . . . 4 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ)
2514, 24remulcld 7819 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
26 1nn 8754 . . . . . . . . 9 1 ∈ ℕ
2726a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
284, 27ffvelrnd 5563 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ+)
2919nnzd 9195 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
3028, 29rpexpcld 10478 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
31 4re 8820 . . . . . . . . 9 4 ∈ ℝ
32 4pos 8840 . . . . . . . . 9 0 < 4
3331, 32elrpii 9472 . . . . . . . 8 4 ∈ ℝ+
3433a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
355nnzd 9195 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
36 peano2zm 9115 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3735, 36syl 14 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
3834, 37rpexpcld 10478 . . . . . 6 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3930, 38rpdivcld 9530 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
4039rpred 9512 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
4140, 24remulcld 7819 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
426, 9rpaddcld 9528 . . . . . . 7 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ+)
4342, 23rpmulcld 9529 . . . . . 6 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ+)
4443rpred 9512 . . . . 5 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
452adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝐴 ∈ ℝ)
463adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 0 ≤ 𝐴)
475adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 ∈ ℕ)
488adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑀 ∈ ℕ)
49 simpr 109 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
501, 45, 46, 47, 48, 49resqrexlemdecn 10815 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) < (𝐹𝑁))
5110adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) ∈ ℝ)
527adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑁) ∈ ℝ)
53 difrp 9508 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5451, 52, 53syl2anc 409 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5550, 54mpbid 146 . . . . . . 7 ((𝜑𝑁 < 𝑀) → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+)
5655rpge0d 9516 . . . . . 6 ((𝜑𝑁 < 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
577recnd 7817 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℂ)
5857subidd 8084 . . . . . . . 8 (𝜑 → ((𝐹𝑁) − (𝐹𝑁)) = 0)
59 fveq2 5428 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐹𝑁) = (𝐹𝑀))
6059oveq2d 5797 . . . . . . . 8 (𝑁 = 𝑀 → ((𝐹𝑁) − (𝐹𝑁)) = ((𝐹𝑁) − (𝐹𝑀)))
6158, 60sylan9req 2194 . . . . . . 7 ((𝜑𝑁 = 𝑀) → 0 = ((𝐹𝑁) − (𝐹𝑀)))
62 0re 7789 . . . . . . . 8 0 ∈ ℝ
6362eqlei 7880 . . . . . . 7 (0 = ((𝐹𝑁) − (𝐹𝑀)) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
6461, 63syl 14 . . . . . 6 ((𝜑𝑁 = 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
65 resqrexlemnmsq.nm . . . . . . 7 (𝜑𝑁𝑀)
668nnzd 9195 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
67 zleloe 9124 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6835, 66, 67syl2anc 409 . . . . . . 7 (𝜑 → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6965, 68mpbid 146 . . . . . 6 (𝜑 → (𝑁 < 𝑀𝑁 = 𝑀))
7056, 64, 69mpjaodan 788 . . . . 5 (𝜑 → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
71 1red 7804 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7221nnrecred 8790 . . . . . . . . . . 11 (𝜑 → (1 / (2↑𝑁)) ∈ ℝ)
7372recnd 7817 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) ∈ ℂ)
7473addid1d 7934 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) = (1 / (2↑𝑁)))
75 0red 7790 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
761, 2, 3resqrexlemlo 10816 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
775, 76mpdan 418 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))
789rpgt0d 9515 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑀))
7972, 75, 7, 10, 77, 78lt2addd 8352 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) < ((𝐹𝑁) + (𝐹𝑀)))
8074, 79eqbrtrrd 3959 . . . . . . . 8 (𝜑 → (1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)))
817, 10readdcld 7818 . . . . . . . . 9 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ)
8271, 81, 22ltdivmul2d 9565 . . . . . . . 8 (𝜑 → ((1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)) ↔ 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁))))
8380, 82mpbid 146 . . . . . . 7 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)))
8417oveq2d 5797 . . . . . . 7 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)) = (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8583, 84breqtrd 3961 . . . . . 6 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8671, 44, 85ltled 7904 . . . . 5 (𝜑 → 1 ≤ (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8711, 44, 70, 86lemulge11d 8718 . . . 4 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
8811recnd 7817 . . . . . 6 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℂ)
8981recnd 7817 . . . . . 6 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℂ)
9023rpcnd 9514 . . . . . 6 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℂ)
9188, 89, 90mulassd 7812 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
9288, 89mulcomd 7810 . . . . . . 7 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9310recnd 7817 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℂ)
94 subsq 10429 . . . . . . . 8 (((𝐹𝑁) ∈ ℂ ∧ (𝐹𝑀) ∈ ℂ) → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9557, 93, 94syl2anc 409 . . . . . . 7 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9692, 95eqtr4d 2176 . . . . . 6 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
9796oveq1d 5796 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9891, 97eqtr3d 2175 . . . 4 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9987, 98breqtrd 3961 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
1001, 2, 3, 5, 8, 65resqrexlemnmsq 10820 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
10114, 40, 23, 100ltmul1dd 9568 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10211, 25, 41, 99, 101lelttrd 7910 . 2 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10340recnd 7817 . . . . . 6 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℂ)
10419nnrpd 9510 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
105104, 37rpexpcld 10478 . . . . . . 7 (𝜑 → (2↑(𝑁 − 1)) ∈ ℝ+)
106105rpcnd 9514 . . . . . 6 (𝜑 → (2↑(𝑁 − 1)) ∈ ℂ)
107 2cnd 8816 . . . . . 6 (𝜑 → 2 ∈ ℂ)
108103, 106, 107mulassd 7812 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10930rpcnd 9514 . . . . . . . 8 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
11038rpcnd 9514 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) ∈ ℂ)
11138rpap0d 9518 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) # 0)
112109, 110, 106, 111div32apd 8597 . . . . . . 7 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
113 4d2e2 8903 . . . . . . . . . . . 12 (4 / 2) = 2
114113oveq1i 5791 . . . . . . . . . . 11 ((4 / 2)↑(𝑁 − 1)) = (2↑(𝑁 − 1))
11534rpcnd 9514 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℂ)
116104rpap0d 9518 . . . . . . . . . . . 12 (𝜑 → 2 # 0)
117 nnm1nn0 9041 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1185, 117syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
119115, 107, 116, 118expdivapd 10468 . . . . . . . . . . 11 (𝜑 → ((4 / 2)↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
120114, 119syl5eqr 2187 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
121120oveq2d 5797 . . . . . . . . 9 (𝜑 → (1 / (2↑(𝑁 − 1))) = (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))))
122105rpap0d 9518 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) # 0)
123110, 106, 111, 122recdivapd 8590 . . . . . . . . 9 (𝜑 → (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
124121, 123eqtrd 2173 . . . . . . . 8 (𝜑 → (1 / (2↑(𝑁 − 1))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
125124oveq2d 5797 . . . . . . 7 (𝜑 → (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
126112, 125eqtr4d 2176 . . . . . 6 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))))
127126oveq1d 5796 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
128108, 127eqtr3d 2175 . . . 4 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
129106, 122recclapd 8564 . . . . 5 (𝜑 → (1 / (2↑(𝑁 − 1))) ∈ ℂ)
130109, 129, 107mul32d 7938 . . . 4 (𝜑 → ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
131128, 130eqtrd 2173 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
132109, 107mulcld 7809 . . . 4 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℂ)
133132, 106, 122divrecapd 8576 . . 3 (𝜑 → ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
134131, 133eqtr4d 2176 . 2 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
135102, 134breqtrd 3961 1 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   = wceq 1332   ∈ wcel 1481  {csn 3531   class class class wbr 3936   × cxp 4544  ‘cfv 5130  (class class class)co 5781   ∈ cmpo 5783  ℂcc 7641  ℝcr 7642  0cc0 7643  1c1 7644   + caddc 7646   · cmul 7648   < clt 7823   ≤ cle 7824   − cmin 7956   / cdiv 8455  ℕcn 8743  2c2 8794  4c4 8796  ℕ0cn0 9000  ℤcz 9077  ℝ+crp 9469  seqcseq 10248  ↑cexp 10322 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-seqfrec 10249  df-exp 10323 This theorem is referenced by:  resqrexlemcvg  10822
 Copyright terms: Public domain W3C validator