ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm GIF version

Theorem resqrexlemnm 10946
Description: Lemma for resqrex 10954. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnm (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10935 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5615 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9623 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℝ)
8 resqrexlemnmsq.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
94, 8ffvelrnd 5615 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ+)
109rpred 9623 . . . 4 (𝜑 → (𝐹𝑀) ∈ ℝ)
117, 10resubcld 8270 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ)
127resqcld 10603 . . . . 5 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
1310resqcld 10603 . . . . 5 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1412, 13resubcld 8270 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) ∈ ℝ)
15 2cn 8919 . . . . . . 7 2 ∈ ℂ
16 expm1t 10473 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1715, 5, 16sylancr 411 . . . . . 6 (𝜑 → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
18 2nn 9009 . . . . . . . . 9 2 ∈ ℕ
1918a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
205nnnn0d 9158 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
2119, 20nnexpcld 10599 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
2221nnrpd 9621 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
2317, 22eqeltrrd 2242 . . . . 5 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ+)
2423rpred 9623 . . . 4 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ)
2514, 24remulcld 7920 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
26 1nn 8859 . . . . . . . . 9 1 ∈ ℕ
2726a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
284, 27ffvelrnd 5615 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ+)
2919nnzd 9303 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
3028, 29rpexpcld 10601 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
31 4re 8925 . . . . . . . . 9 4 ∈ ℝ
32 4pos 8945 . . . . . . . . 9 0 < 4
3331, 32elrpii 9583 . . . . . . . 8 4 ∈ ℝ+
3433a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
355nnzd 9303 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
36 peano2zm 9220 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3735, 36syl 14 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
3834, 37rpexpcld 10601 . . . . . 6 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3930, 38rpdivcld 9641 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
4039rpred 9623 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
4140, 24remulcld 7920 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
426, 9rpaddcld 9639 . . . . . . 7 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ+)
4342, 23rpmulcld 9640 . . . . . 6 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ+)
4443rpred 9623 . . . . 5 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
452adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝐴 ∈ ℝ)
463adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 0 ≤ 𝐴)
475adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 ∈ ℕ)
488adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑀 ∈ ℕ)
49 simpr 109 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
501, 45, 46, 47, 48, 49resqrexlemdecn 10940 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) < (𝐹𝑁))
5110adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) ∈ ℝ)
527adantr 274 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑁) ∈ ℝ)
53 difrp 9619 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5451, 52, 53syl2anc 409 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5550, 54mpbid 146 . . . . . . 7 ((𝜑𝑁 < 𝑀) → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+)
5655rpge0d 9627 . . . . . 6 ((𝜑𝑁 < 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
577recnd 7918 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℂ)
5857subidd 8188 . . . . . . . 8 (𝜑 → ((𝐹𝑁) − (𝐹𝑁)) = 0)
59 fveq2 5480 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐹𝑁) = (𝐹𝑀))
6059oveq2d 5852 . . . . . . . 8 (𝑁 = 𝑀 → ((𝐹𝑁) − (𝐹𝑁)) = ((𝐹𝑁) − (𝐹𝑀)))
6158, 60sylan9req 2218 . . . . . . 7 ((𝜑𝑁 = 𝑀) → 0 = ((𝐹𝑁) − (𝐹𝑀)))
62 0re 7890 . . . . . . . 8 0 ∈ ℝ
6362eqlei 7983 . . . . . . 7 (0 = ((𝐹𝑁) − (𝐹𝑀)) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
6461, 63syl 14 . . . . . 6 ((𝜑𝑁 = 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
65 resqrexlemnmsq.nm . . . . . . 7 (𝜑𝑁𝑀)
668nnzd 9303 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
67 zleloe 9229 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6835, 66, 67syl2anc 409 . . . . . . 7 (𝜑 → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6965, 68mpbid 146 . . . . . 6 (𝜑 → (𝑁 < 𝑀𝑁 = 𝑀))
7056, 64, 69mpjaodan 788 . . . . 5 (𝜑 → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
71 1red 7905 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7221nnrecred 8895 . . . . . . . . . . 11 (𝜑 → (1 / (2↑𝑁)) ∈ ℝ)
7372recnd 7918 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) ∈ ℂ)
7473addid1d 8038 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) = (1 / (2↑𝑁)))
75 0red 7891 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
761, 2, 3resqrexlemlo 10941 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
775, 76mpdan 418 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))
789rpgt0d 9626 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑀))
7972, 75, 7, 10, 77, 78lt2addd 8456 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) < ((𝐹𝑁) + (𝐹𝑀)))
8074, 79eqbrtrrd 4000 . . . . . . . 8 (𝜑 → (1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)))
817, 10readdcld 7919 . . . . . . . . 9 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ)
8271, 81, 22ltdivmul2d 9676 . . . . . . . 8 (𝜑 → ((1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)) ↔ 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁))))
8380, 82mpbid 146 . . . . . . 7 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)))
8417oveq2d 5852 . . . . . . 7 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)) = (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8583, 84breqtrd 4002 . . . . . 6 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8671, 44, 85ltled 8008 . . . . 5 (𝜑 → 1 ≤ (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8711, 44, 70, 86lemulge11d 8823 . . . 4 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
8811recnd 7918 . . . . . 6 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℂ)
8981recnd 7918 . . . . . 6 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℂ)
9023rpcnd 9625 . . . . . 6 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℂ)
9188, 89, 90mulassd 7913 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
9288, 89mulcomd 7911 . . . . . . 7 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9310recnd 7918 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℂ)
94 subsq 10551 . . . . . . . 8 (((𝐹𝑁) ∈ ℂ ∧ (𝐹𝑀) ∈ ℂ) → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9557, 93, 94syl2anc 409 . . . . . . 7 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9692, 95eqtr4d 2200 . . . . . 6 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
9796oveq1d 5851 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9891, 97eqtr3d 2199 . . . 4 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9987, 98breqtrd 4002 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
1001, 2, 3, 5, 8, 65resqrexlemnmsq 10945 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
10114, 40, 23, 100ltmul1dd 9679 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10211, 25, 41, 99, 101lelttrd 8014 . 2 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10340recnd 7918 . . . . . 6 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℂ)
10419nnrpd 9621 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
105104, 37rpexpcld 10601 . . . . . . 7 (𝜑 → (2↑(𝑁 − 1)) ∈ ℝ+)
106105rpcnd 9625 . . . . . 6 (𝜑 → (2↑(𝑁 − 1)) ∈ ℂ)
107 2cnd 8921 . . . . . 6 (𝜑 → 2 ∈ ℂ)
108103, 106, 107mulassd 7913 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10930rpcnd 9625 . . . . . . . 8 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
11038rpcnd 9625 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) ∈ ℂ)
11138rpap0d 9629 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) # 0)
112109, 110, 106, 111div32apd 8701 . . . . . . 7 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
113 4d2e2 9008 . . . . . . . . . . . 12 (4 / 2) = 2
114113oveq1i 5846 . . . . . . . . . . 11 ((4 / 2)↑(𝑁 − 1)) = (2↑(𝑁 − 1))
11534rpcnd 9625 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℂ)
116104rpap0d 9629 . . . . . . . . . . . 12 (𝜑 → 2 # 0)
117 nnm1nn0 9146 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1185, 117syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
119115, 107, 116, 118expdivapd 10591 . . . . . . . . . . 11 (𝜑 → ((4 / 2)↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
120114, 119eqtr3id 2211 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
121120oveq2d 5852 . . . . . . . . 9 (𝜑 → (1 / (2↑(𝑁 − 1))) = (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))))
122105rpap0d 9629 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) # 0)
123110, 106, 111, 122recdivapd 8694 . . . . . . . . 9 (𝜑 → (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
124121, 123eqtrd 2197 . . . . . . . 8 (𝜑 → (1 / (2↑(𝑁 − 1))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
125124oveq2d 5852 . . . . . . 7 (𝜑 → (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
126112, 125eqtr4d 2200 . . . . . 6 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))))
127126oveq1d 5851 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
128108, 127eqtr3d 2199 . . . 4 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
129106, 122recclapd 8668 . . . . 5 (𝜑 → (1 / (2↑(𝑁 − 1))) ∈ ℂ)
130109, 129, 107mul32d 8042 . . . 4 (𝜑 → ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
131128, 130eqtrd 2197 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
132109, 107mulcld 7910 . . . 4 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℂ)
133132, 106, 122divrecapd 8680 . . 3 (𝜑 → ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
134131, 133eqtr4d 2200 . 2 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
135102, 134breqtrd 4002 1 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wcel 2135  {csn 3570   class class class wbr 3976   × cxp 4596  cfv 5182  (class class class)co 5836  cmpo 5838  cc 7742  cr 7743  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749   < clt 7924  cle 7925  cmin 8060   / cdiv 8559  cn 8848  2c2 8899  4c4 8901  0cn0 9105  cz 9182  +crp 9580  seqcseq 10370  cexp 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445
This theorem is referenced by:  resqrexlemcvg  10947
  Copyright terms: Public domain W3C validator