ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm GIF version

Theorem resqrexlemnm 10566
Description: Lemma for resqrex 10574. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnm (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10555 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5474 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9272 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℝ)
8 resqrexlemnmsq.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
94, 8ffvelrnd 5474 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ+)
109rpred 9272 . . . 4 (𝜑 → (𝐹𝑀) ∈ ℝ)
117, 10resubcld 7956 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ)
127resqcld 10227 . . . . 5 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
1310resqcld 10227 . . . . 5 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1412, 13resubcld 7956 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) ∈ ℝ)
15 2cn 8591 . . . . . . 7 2 ∈ ℂ
16 expm1t 10098 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1715, 5, 16sylancr 406 . . . . . 6 (𝜑 → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
18 2nn 8675 . . . . . . . . 9 2 ∈ ℕ
1918a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
205nnnn0d 8824 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
2119, 20nnexpcld 10223 . . . . . . 7 (𝜑 → (2↑𝑁) ∈ ℕ)
2221nnrpd 9271 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℝ+)
2317, 22eqeltrrd 2172 . . . . 5 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ+)
2423rpred 9272 . . . 4 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℝ)
2514, 24remulcld 7615 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
26 1nn 8531 . . . . . . . . 9 1 ∈ ℕ
2726a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
284, 27ffvelrnd 5474 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ+)
2919nnzd 8966 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
3028, 29rpexpcld 10225 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
31 4re 8597 . . . . . . . . 9 4 ∈ ℝ
32 4pos 8617 . . . . . . . . 9 0 < 4
3331, 32elrpii 9236 . . . . . . . 8 4 ∈ ℝ+
3433a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
355nnzd 8966 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
36 peano2zm 8886 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3735, 36syl 14 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
3834, 37rpexpcld 10225 . . . . . 6 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3930, 38rpdivcld 9290 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
4039rpred 9272 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
4140, 24remulcld 7615 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
426, 9rpaddcld 9288 . . . . . . 7 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ+)
4342, 23rpmulcld 9289 . . . . . 6 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ+)
4443rpred 9272 . . . . 5 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)) ∈ ℝ)
452adantr 271 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝐴 ∈ ℝ)
463adantr 271 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 0 ≤ 𝐴)
475adantr 271 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 ∈ ℕ)
488adantr 271 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑀 ∈ ℕ)
49 simpr 109 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
501, 45, 46, 47, 48, 49resqrexlemdecn 10560 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) < (𝐹𝑁))
5110adantr 271 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑀) ∈ ℝ)
527adantr 271 . . . . . . . . 9 ((𝜑𝑁 < 𝑀) → (𝐹𝑁) ∈ ℝ)
53 difrp 9269 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5451, 52, 53syl2anc 404 . . . . . . . 8 ((𝜑𝑁 < 𝑀) → ((𝐹𝑀) < (𝐹𝑁) ↔ ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+))
5550, 54mpbid 146 . . . . . . 7 ((𝜑𝑁 < 𝑀) → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℝ+)
5655rpge0d 9276 . . . . . 6 ((𝜑𝑁 < 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
577recnd 7613 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℂ)
5857subidd 7878 . . . . . . . 8 (𝜑 → ((𝐹𝑁) − (𝐹𝑁)) = 0)
59 fveq2 5340 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐹𝑁) = (𝐹𝑀))
6059oveq2d 5706 . . . . . . . 8 (𝑁 = 𝑀 → ((𝐹𝑁) − (𝐹𝑁)) = ((𝐹𝑁) − (𝐹𝑀)))
6158, 60sylan9req 2148 . . . . . . 7 ((𝜑𝑁 = 𝑀) → 0 = ((𝐹𝑁) − (𝐹𝑀)))
62 0re 7585 . . . . . . . 8 0 ∈ ℝ
6362eqlei 7675 . . . . . . 7 (0 = ((𝐹𝑁) − (𝐹𝑀)) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
6461, 63syl 14 . . . . . 6 ((𝜑𝑁 = 𝑀) → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
65 resqrexlemnmsq.nm . . . . . . 7 (𝜑𝑁𝑀)
668nnzd 8966 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
67 zleloe 8895 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6835, 66, 67syl2anc 404 . . . . . . 7 (𝜑 → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
6965, 68mpbid 146 . . . . . 6 (𝜑 → (𝑁 < 𝑀𝑁 = 𝑀))
7056, 64, 69mpjaodan 750 . . . . 5 (𝜑 → 0 ≤ ((𝐹𝑁) − (𝐹𝑀)))
71 1red 7600 . . . . . 6 (𝜑 → 1 ∈ ℝ)
7221nnrecred 8567 . . . . . . . . . . 11 (𝜑 → (1 / (2↑𝑁)) ∈ ℝ)
7372recnd 7613 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) ∈ ℂ)
7473addid1d 7728 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) = (1 / (2↑𝑁)))
75 0red 7586 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
761, 2, 3resqrexlemlo 10561 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
775, 76mpdan 413 . . . . . . . . . 10 (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))
789rpgt0d 9275 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑀))
7972, 75, 7, 10, 77, 78lt2addd 8141 . . . . . . . . 9 (𝜑 → ((1 / (2↑𝑁)) + 0) < ((𝐹𝑁) + (𝐹𝑀)))
8074, 79eqbrtrrd 3889 . . . . . . . 8 (𝜑 → (1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)))
817, 10readdcld 7614 . . . . . . . . 9 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℝ)
8271, 81, 22ltdivmul2d 9325 . . . . . . . 8 (𝜑 → ((1 / (2↑𝑁)) < ((𝐹𝑁) + (𝐹𝑀)) ↔ 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁))))
8380, 82mpbid 146 . . . . . . 7 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)))
8417oveq2d 5706 . . . . . . 7 (𝜑 → (((𝐹𝑁) + (𝐹𝑀)) · (2↑𝑁)) = (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8583, 84breqtrd 3891 . . . . . 6 (𝜑 → 1 < (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8671, 44, 85ltled 7699 . . . . 5 (𝜑 → 1 ≤ (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2)))
8711, 44, 70, 86lemulge11d 8495 . . . 4 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
8811recnd 7613 . . . . . 6 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ∈ ℂ)
8981recnd 7613 . . . . . 6 (𝜑 → ((𝐹𝑁) + (𝐹𝑀)) ∈ ℂ)
9023rpcnd 9274 . . . . . 6 (𝜑 → ((2↑(𝑁 − 1)) · 2) ∈ ℂ)
9188, 89, 90mulassd 7608 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))))
9288, 89mulcomd 7606 . . . . . . 7 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9310recnd 7613 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℂ)
94 subsq 10176 . . . . . . . 8 (((𝐹𝑁) ∈ ℂ ∧ (𝐹𝑀) ∈ ℂ) → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9557, 93, 94syl2anc 404 . . . . . . 7 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) = (((𝐹𝑁) + (𝐹𝑀)) · ((𝐹𝑁) − (𝐹𝑀))))
9692, 95eqtr4d 2130 . . . . . 6 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
9796oveq1d 5705 . . . . 5 (𝜑 → ((((𝐹𝑁) − (𝐹𝑀)) · ((𝐹𝑁) + (𝐹𝑀))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9891, 97eqtr3d 2129 . . . 4 (𝜑 → (((𝐹𝑁) − (𝐹𝑀)) · (((𝐹𝑁) + (𝐹𝑀)) · ((2↑(𝑁 − 1)) · 2))) = ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
9987, 98breqtrd 3891 . . 3 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) ≤ ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)))
1001, 2, 3, 5, 8, 65resqrexlemnmsq 10565 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
10114, 40, 23, 100ltmul1dd 9328 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) · ((2↑(𝑁 − 1)) · 2)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10211, 25, 41, 99, 101lelttrd 7705 . 2 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10340recnd 7613 . . . . . 6 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℂ)
10419nnrpd 9271 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
105104, 37rpexpcld 10225 . . . . . . 7 (𝜑 → (2↑(𝑁 − 1)) ∈ ℝ+)
106105rpcnd 9274 . . . . . 6 (𝜑 → (2↑(𝑁 − 1)) ∈ ℂ)
107 2cnd 8593 . . . . . 6 (𝜑 → 2 ∈ ℂ)
108103, 106, 107mulassd 7608 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)))
10930rpcnd 9274 . . . . . . . 8 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
11038rpcnd 9274 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) ∈ ℂ)
11138rpap0d 9278 . . . . . . . 8 (𝜑 → (4↑(𝑁 − 1)) # 0)
112109, 110, 106, 111div32apd 8378 . . . . . . 7 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
113 4d2e2 8674 . . . . . . . . . . . 12 (4 / 2) = 2
114113oveq1i 5700 . . . . . . . . . . 11 ((4 / 2)↑(𝑁 − 1)) = (2↑(𝑁 − 1))
11534rpcnd 9274 . . . . . . . . . . . 12 (𝜑 → 4 ∈ ℂ)
116104rpap0d 9278 . . . . . . . . . . . 12 (𝜑 → 2 # 0)
117 nnm1nn0 8812 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1185, 117syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
119115, 107, 116, 118expdivapd 10215 . . . . . . . . . . 11 (𝜑 → ((4 / 2)↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
120114, 119syl5eqr 2141 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) = ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1))))
121120oveq2d 5706 . . . . . . . . 9 (𝜑 → (1 / (2↑(𝑁 − 1))) = (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))))
122105rpap0d 9278 . . . . . . . . . 10 (𝜑 → (2↑(𝑁 − 1)) # 0)
123110, 106, 111, 122recdivapd 8371 . . . . . . . . 9 (𝜑 → (1 / ((4↑(𝑁 − 1)) / (2↑(𝑁 − 1)))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
124121, 123eqtrd 2127 . . . . . . . 8 (𝜑 → (1 / (2↑(𝑁 − 1))) = ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1))))
125124oveq2d 5706 . . . . . . 7 (𝜑 → (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) = (((𝐹‘1)↑2) · ((2↑(𝑁 − 1)) / (4↑(𝑁 − 1)))))
126112, 125eqtr4d 2130 . . . . . 6 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) = (((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))))
127126oveq1d 5705 . . . . 5 (𝜑 → (((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · (2↑(𝑁 − 1))) · 2) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
128108, 127eqtr3d 2129 . . . 4 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2))
129106, 122recclapd 8345 . . . . 5 (𝜑 → (1 / (2↑(𝑁 − 1))) ∈ ℂ)
130109, 129, 107mul32d 7732 . . . 4 (𝜑 → ((((𝐹‘1)↑2) · (1 / (2↑(𝑁 − 1)))) · 2) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
131128, 130eqtrd 2127 . . 3 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
132109, 107mulcld 7605 . . . 4 (𝜑 → (((𝐹‘1)↑2) · 2) ∈ ℂ)
133132, 106, 122divrecapd 8357 . . 3 (𝜑 → ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))) = ((((𝐹‘1)↑2) · 2) · (1 / (2↑(𝑁 − 1)))))
134131, 133eqtr4d 2130 . 2 (𝜑 → ((((𝐹‘1)↑2) / (4↑(𝑁 − 1))) · ((2↑(𝑁 − 1)) · 2)) = ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
135102, 134breqtrd 3891 1 (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 667   = wceq 1296  wcel 1445  {csn 3466   class class class wbr 3867   × cxp 4465  cfv 5049  (class class class)co 5690  cmpt2 5692  cc 7445  cr 7446  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452   < clt 7619  cle 7620  cmin 7750   / cdiv 8236  cn 8520  2c2 8571  4c4 8573  0cn0 8771  cz 8848  +crp 9233  seqcseq 10000  cexp 10069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-rp 9234  df-seqfrec 10001  df-exp 10070
This theorem is referenced by:  resqrexlemcvg  10567
  Copyright terms: Public domain W3C validator