Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unabs GIF version

Theorem unabs 3338
 Description: Absorption law for union. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
unabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem unabs
StepHypRef Expression
1 inss1 3327 . 2 (𝐴𝐵) ⊆ 𝐴
2 ssequn2 3280 . 2 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∪ (𝐴𝐵)) = 𝐴)
31, 2mpbi 144 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
 Colors of variables: wff set class Syntax hints:   = wceq 1335   ∪ cun 3100   ∩ cin 3101   ⊆ wss 3102 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator