ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 GIF version

Theorem ssequn2 3348
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3345 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 uncom 3319 . . 3 (𝐴𝐵) = (𝐵𝐴)
32eqeq1i 2214 . 2 ((𝐴𝐵) = 𝐵 ↔ (𝐵𝐴) = 𝐵)
41, 3bitri 184 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  cun 3166  wss 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3172  df-in 3174  df-ss 3181
This theorem is referenced by:  unabs  3406  pwssunim  4336  pwundifss  4337  oneluni  4483  relresfld  5218  relcoi1  5220  fsnunf  5794  unsnfidcel  7030  tpfidceq  7039  fidcenumlemr  7069  exmidfodomrlemim  7322  ennnfonelemhf1o  12834  lspun0  14237  plyrecj  15285  dvply2g  15288
  Copyright terms: Public domain W3C validator