ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 GIF version

Theorem ssequn2 3377
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3374 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 uncom 3348 . . 3 (𝐴𝐵) = (𝐵𝐴)
32eqeq1i 2237 . 2 ((𝐴𝐵) = 𝐵 ↔ (𝐵𝐴) = 𝐵)
41, 3bitri 184 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  cun 3195  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  unabs  3435  pwssunim  4372  pwundifss  4373  oneluni  4519  relresfld  5254  relcoi1  5256  fsnunf  5832  unsnfidcel  7071  tpfidceq  7080  fidcenumlemr  7110  exmidfodomrlemim  7367  ennnfonelemhf1o  12970  lspun0  14374  plyrecj  15422  dvply2g  15425
  Copyright terms: Public domain W3C validator