| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss1 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss1 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3347 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | simplbi 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3188 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∩ cin 3156 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: inss2 3385 ssinss1 3393 unabs 3395 inssddif 3405 inv1 3488 disjdif 3524 inundifss 3529 relin1 4782 resss 4971 resmpt3 4996 cnvcnvss 5125 funin 5330 funimass2 5337 fnresin1 5375 fnres 5377 fresin 5439 ssimaex 5625 fneqeql2 5674 isoini2 5869 ofrfval 6148 ofvalg 6149 ofrval 6150 off 6152 ofres 6154 ofco 6158 smores 6359 smores2 6361 tfrlem5 6381 pmresg 6744 unfiin 6996 infidc 7009 sbthlem7 7038 peano5nnnn 7978 peano5nni 9012 rexanuz 11172 nninfdclemcl 12692 nninfdclemp1 12694 fvsetsid 12739 tgvalex 12967 tgval2 14395 eltg3 14401 tgcl 14408 tgdom 14416 tgidm 14418 epttop 14434 ntropn 14461 ntrin 14468 cnptopresti 14582 cnptoprest 14583 txcnmpt 14617 xmetres 14726 metres 14727 blin2 14776 metrest 14850 tgioo 14898 limcresi 15010 2sqlem8 15472 bj-charfun 15561 bj-charfundc 15562 bj-charfundcALT 15563 |
| Copyright terms: Public domain | W3C validator |