Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inss1 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss1 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3316 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | simplbi 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3157 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 ∩ cin 3126 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 |
This theorem is referenced by: inss2 3354 ssinss1 3362 unabs 3364 inssddif 3374 inv1 3457 disjdif 3493 inundifss 3498 relin1 4738 resss 4924 resmpt3 4949 cnvcnvss 5075 funin 5279 funimass2 5286 fnresin1 5322 fnres 5324 fresin 5386 ssimaex 5569 fneqeql2 5617 isoini2 5810 ofrfval 6081 ofvalg 6082 ofrval 6083 off 6085 ofres 6087 ofco 6091 smores 6283 smores2 6285 tfrlem5 6305 pmresg 6666 unfiin 6915 sbthlem7 6952 peano5nnnn 7866 peano5nni 8895 rexanuz 10965 nninfdclemcl 12416 nninfdclemp1 12418 fvsetsid 12463 tgvalex 13130 tgval2 13131 eltg3 13137 tgcl 13144 tgdom 13152 tgidm 13154 epttop 13170 ntropn 13197 ntrin 13204 cnptopresti 13318 cnptoprest 13319 txcnmpt 13353 xmetres 13462 metres 13463 blin2 13512 metrest 13586 tgioo 13626 limcresi 13715 2sqlem8 14039 bj-charfun 14128 bj-charfundc 14129 bj-charfundcALT 14130 |
Copyright terms: Public domain | W3C validator |