| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss1 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss1 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3360 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | simplbi 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3201 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∩ cin 3169 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 |
| This theorem is referenced by: inss2 3398 ssinss1 3406 unabs 3408 inssddif 3418 inv1 3501 disjdif 3537 inundifss 3542 relin1 4806 resss 4997 resmpt3 5022 cnvcnvss 5151 funin 5359 funimass2 5366 fnresin1 5405 fnres 5407 fresin 5471 ssimaex 5658 fneqeql2 5707 isoini2 5906 ofrfval 6185 ofvalg 6186 ofrval 6187 off 6189 ofres 6191 ofco 6195 smores 6396 smores2 6398 tfrlem5 6418 pmresg 6781 unfiin 7044 infidc 7057 sbthlem7 7086 peano5nnnn 8035 peano5nni 9069 rexanuz 11384 nninfdclemcl 12904 nninfdclemp1 12906 fvsetsid 12951 tgvalex 13180 tgval2 14608 eltg3 14614 tgcl 14621 tgdom 14629 tgidm 14631 epttop 14647 ntropn 14674 ntrin 14681 cnptopresti 14795 cnptoprest 14796 txcnmpt 14830 xmetres 14939 metres 14940 blin2 14989 metrest 15063 tgioo 15111 limcresi 15223 2sqlem8 15685 bj-charfun 15912 bj-charfundc 15913 bj-charfundcALT 15914 |
| Copyright terms: Public domain | W3C validator |