ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss1 GIF version

Theorem inss1 3342
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss1 (𝐴𝐵) ⊆ 𝐴

Proof of Theorem inss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3305 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21simplbi 272 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
32ssriv 3146 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2136  cin 3115  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by:  inss2  3343  ssinss1  3351  unabs  3353  inssddif  3363  inv1  3445  disjdif  3481  inundifss  3486  relin1  4722  resss  4908  resmpt3  4933  cnvcnvss  5058  funin  5259  funimass2  5266  fnresin1  5302  fnres  5304  fresin  5366  ssimaex  5547  fneqeql2  5594  isoini2  5787  ofrfval  6058  ofvalg  6059  ofrval  6060  off  6062  ofres  6064  ofco  6068  smores  6260  smores2  6262  tfrlem5  6282  pmresg  6642  unfiin  6891  sbthlem7  6928  peano5nnnn  7833  peano5nni  8860  rexanuz  10930  nninfdclemcl  12381  nninfdclemp1  12383  fvsetsid  12428  tgvalex  12690  tgval2  12691  eltg3  12697  tgcl  12704  tgdom  12712  tgidm  12714  epttop  12730  ntropn  12757  ntrin  12764  cnptopresti  12878  cnptoprest  12879  txcnmpt  12913  xmetres  13022  metres  13023  blin2  13072  metrest  13146  tgioo  13186  limcresi  13275  2sqlem8  13599  bj-charfun  13689  bj-charfundc  13690  bj-charfundcALT  13691
  Copyright terms: Public domain W3C validator