| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss1 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss1 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3387 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | simplbi 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3228 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: inss2 3425 ssinss1 3433 unabs 3435 inssddif 3445 inv1 3528 disjdif 3564 inundifss 3569 relin1 4836 resss 5028 resmpt3 5053 cnvcnvss 5182 funin 5391 funimass2 5398 fnresin1 5437 fnres 5439 fresin 5503 ssimaex 5694 fneqeql2 5743 isoini2 5942 ofrfval 6225 ofvalg 6226 ofrval 6227 off 6229 ofres 6231 ofco 6235 smores 6436 smores2 6438 tfrlem5 6458 pmresg 6821 unfiin 7084 infidc 7097 sbthlem7 7126 peano5nnnn 8075 peano5nni 9109 rexanuz 11494 nninfdclemcl 13014 nninfdclemp1 13016 fvsetsid 13061 tgvalex 13291 tgval2 14719 eltg3 14725 tgcl 14732 tgdom 14740 tgidm 14742 epttop 14758 ntropn 14785 ntrin 14792 cnptopresti 14906 cnptoprest 14907 txcnmpt 14941 xmetres 15050 metres 15051 blin2 15100 metrest 15174 tgioo 15222 limcresi 15334 2sqlem8 15796 bj-charfun 16128 bj-charfundc 16129 bj-charfundcALT 16130 |
| Copyright terms: Public domain | W3C validator |