| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inss1 | GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss1 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3356 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | simplbi 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3197 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ∩ cin 3165 ⊆ wss 3166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: inss2 3394 ssinss1 3402 unabs 3404 inssddif 3414 inv1 3497 disjdif 3533 inundifss 3538 relin1 4793 resss 4983 resmpt3 5008 cnvcnvss 5137 funin 5345 funimass2 5352 fnresin1 5390 fnres 5392 fresin 5454 ssimaex 5640 fneqeql2 5689 isoini2 5888 ofrfval 6167 ofvalg 6168 ofrval 6169 off 6171 ofres 6173 ofco 6177 smores 6378 smores2 6380 tfrlem5 6400 pmresg 6763 unfiin 7023 infidc 7036 sbthlem7 7065 peano5nnnn 8005 peano5nni 9039 rexanuz 11299 nninfdclemcl 12819 nninfdclemp1 12821 fvsetsid 12866 tgvalex 13095 tgval2 14523 eltg3 14529 tgcl 14536 tgdom 14544 tgidm 14546 epttop 14562 ntropn 14589 ntrin 14596 cnptopresti 14710 cnptoprest 14711 txcnmpt 14745 xmetres 14854 metres 14855 blin2 14904 metrest 14978 tgioo 15026 limcresi 15138 2sqlem8 15600 bj-charfun 15743 bj-charfundc 15744 bj-charfundcALT 15745 |
| Copyright terms: Public domain | W3C validator |