Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inss1 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss1 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3305 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | simplbi 272 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3146 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∩ cin 3115 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: inss2 3343 ssinss1 3351 unabs 3353 inssddif 3363 inv1 3445 disjdif 3481 inundifss 3486 relin1 4722 resss 4908 resmpt3 4933 cnvcnvss 5058 funin 5259 funimass2 5266 fnresin1 5302 fnres 5304 fresin 5366 ssimaex 5547 fneqeql2 5594 isoini2 5787 ofrfval 6058 ofvalg 6059 ofrval 6060 off 6062 ofres 6064 ofco 6068 smores 6260 smores2 6262 tfrlem5 6282 pmresg 6642 unfiin 6891 sbthlem7 6928 peano5nnnn 7833 peano5nni 8860 rexanuz 10930 nninfdclemcl 12381 nninfdclemp1 12383 fvsetsid 12428 tgvalex 12690 tgval2 12691 eltg3 12697 tgcl 12704 tgdom 12712 tgidm 12714 epttop 12730 ntropn 12757 ntrin 12764 cnptopresti 12878 cnptoprest 12879 txcnmpt 12913 xmetres 13022 metres 13023 blin2 13072 metrest 13146 tgioo 13186 limcresi 13275 2sqlem8 13599 bj-charfun 13689 bj-charfundc 13690 bj-charfundcALT 13691 |
Copyright terms: Public domain | W3C validator |