ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss1 GIF version

Theorem inss1 3384
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
inss1 (𝐴𝐵) ⊆ 𝐴

Proof of Theorem inss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3347 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21simplbi 274 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
32ssriv 3188 1 (𝐴𝐵) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  cin 3156  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  inss2  3385  ssinss1  3393  unabs  3395  inssddif  3405  inv1  3488  disjdif  3524  inundifss  3529  relin1  4782  resss  4971  resmpt3  4996  cnvcnvss  5125  funin  5330  funimass2  5337  fnresin1  5375  fnres  5377  fresin  5439  ssimaex  5625  fneqeql2  5674  isoini2  5869  ofrfval  6148  ofvalg  6149  ofrval  6150  off  6152  ofres  6154  ofco  6158  smores  6359  smores2  6361  tfrlem5  6381  pmresg  6744  unfiin  6996  infidc  7009  sbthlem7  7038  peano5nnnn  7978  peano5nni  9012  rexanuz  11172  nninfdclemcl  12692  nninfdclemp1  12694  fvsetsid  12739  tgvalex  12967  tgval2  14395  eltg3  14401  tgcl  14408  tgdom  14416  tgidm  14418  epttop  14434  ntropn  14461  ntrin  14468  cnptopresti  14582  cnptoprest  14583  txcnmpt  14617  xmetres  14726  metres  14727  blin2  14776  metrest  14850  tgioo  14898  limcresi  15010  2sqlem8  15472  bj-charfun  15561  bj-charfundc  15562  bj-charfundcALT  15563
  Copyright terms: Public domain W3C validator