| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcan | GIF version | ||
| Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| caovcan.1 | ⊢ 𝐶 ∈ V |
| caovcan.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
| Ref | Expression |
|---|---|
| caovcan | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
| 2 | oveq1 5929 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝐶) = (𝐴𝐹𝐶)) | |
| 3 | 1, 2 | eqeq12d 2211 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝐶))) |
| 4 | 3 | imbi1d 231 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶))) |
| 5 | oveq2 5930 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 6 | 5 | eqeq1d 2205 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶))) |
| 7 | eqeq1 2203 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 8 | 6, 7 | imbi12d 234 | . 2 ⊢ (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
| 9 | caovcan.1 | . . 3 ⊢ 𝐶 ∈ V | |
| 10 | oveq2 5930 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝑥𝐹𝑧) = (𝑥𝐹𝐶)) | |
| 11 | 10 | eqeq2d 2208 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐹𝐶))) |
| 12 | eqeq2 2206 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑦 = 𝑧 ↔ 𝑦 = 𝐶)) | |
| 13 | 11, 12 | imbi12d 234 | . . . 4 ⊢ (𝑧 = 𝐶 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))) |
| 14 | 13 | imbi2d 230 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)))) |
| 15 | caovcan.2 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) | |
| 16 | 9, 14, 15 | vtocl 2818 | . 2 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)) |
| 17 | 4, 8, 16 | vtocl2ga 2832 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 (class class class)co 5922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |