Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcan | GIF version |
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
caovcan.1 | ⊢ 𝐶 ∈ V |
caovcan.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) |
Ref | Expression |
---|---|
caovcan | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
2 | oveq1 5860 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝐶) = (𝐴𝐹𝐶)) | |
3 | 1, 2 | eqeq12d 2185 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) ↔ (𝐴𝐹𝑦) = (𝐴𝐹𝐶))) |
4 | 3 | imbi1d 230 | . 2 ⊢ (𝑥 = 𝐴 → (((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶))) |
5 | oveq2 5861 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
6 | 5 | eqeq1d 2179 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = (𝐴𝐹𝐶) ↔ (𝐴𝐹𝐵) = (𝐴𝐹𝐶))) |
7 | eqeq1 2177 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐶 ↔ 𝐵 = 𝐶)) | |
8 | 6, 7 | imbi12d 233 | . 2 ⊢ (𝑦 = 𝐵 → (((𝐴𝐹𝑦) = (𝐴𝐹𝐶) → 𝑦 = 𝐶) ↔ ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
9 | caovcan.1 | . . 3 ⊢ 𝐶 ∈ V | |
10 | oveq2 5861 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝑥𝐹𝑧) = (𝑥𝐹𝐶)) | |
11 | 10 | eqeq2d 2182 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐹𝐶))) |
12 | eqeq2 2180 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑦 = 𝑧 ↔ 𝑦 = 𝐶)) | |
13 | 11, 12 | imbi12d 233 | . . . 4 ⊢ (𝑧 = 𝐶 → (((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶))) |
14 | 13 | imbi2d 229 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ↔ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)))) |
15 | caovcan.2 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) | |
16 | 9, 14, 15 | vtocl 2784 | . 2 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝐶) → 𝑦 = 𝐶)) |
17 | 4, 8, 16 | vtocl2ga 2798 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |