| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtocl2gaf | GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.) | 
| Ref | Expression | 
|---|---|
| vtocl2gaf.a | ⊢ Ⅎ𝑥𝐴 | 
| vtocl2gaf.b | ⊢ Ⅎ𝑦𝐴 | 
| vtocl2gaf.c | ⊢ Ⅎ𝑦𝐵 | 
| vtocl2gaf.1 | ⊢ Ⅎ𝑥𝜓 | 
| vtocl2gaf.2 | ⊢ Ⅎ𝑦𝜒 | 
| vtocl2gaf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtocl2gaf.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| vtocl2gaf.5 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | 
| Ref | Expression | 
|---|---|
| vtocl2gaf | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtocl2gaf.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | vtocl2gaf.b | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | vtocl2gaf.c | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 1 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐶 | 
| 5 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐷 | |
| 6 | 4, 5 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) | 
| 7 | vtocl2gaf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfim 1586 | . . 3 ⊢ Ⅎ𝑥((𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜓) | 
| 9 | 2 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑦 𝐴 ∈ 𝐶 | 
| 10 | 3 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑦 𝐵 ∈ 𝐷 | 
| 11 | 9, 10 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑦(𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) | 
| 12 | vtocl2gaf.2 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 13 | 11, 12 | nfim 1586 | . . 3 ⊢ Ⅎ𝑦((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | 
| 14 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 15 | 14 | anbi1d 465 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) | 
| 16 | vtocl2gaf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 17 | 15, 16 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ↔ ((𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜓))) | 
| 18 | eleq1 2259 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷)) | |
| 19 | 18 | anbi2d 464 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) | 
| 20 | vtocl2gaf.4 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 21 | 19, 20 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜓) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒))) | 
| 22 | vtocl2gaf.5 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
| 23 | 1, 2, 3, 8, 13, 17, 21, 22 | vtocl2gf 2826 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒)) | 
| 24 | 23 | pm2.43i 49 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: vtocl2ga 2832 ovmpos 6046 ov2gf 6047 ovi3 6060 cnmptcom 14534 | 
| Copyright terms: Public domain | W3C validator |