ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrd2ind GIF version

Theorem wrd2ind 11194
Description: Perform induction over the structure of two words of the same length. (Contributed by AV, 23-Jan-2019.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
wrd2ind.1 ((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑𝜓))
wrd2ind.2 ((𝑥 = 𝑦𝑤 = 𝑢) → (𝜑𝜒))
wrd2ind.3 ((𝑥 = (𝑦 ++ ⟨“𝑧”⟩) ∧ 𝑤 = (𝑢 ++ ⟨“𝑠”⟩)) → (𝜑𝜃))
wrd2ind.4 (𝑥 = 𝐴 → (𝜌𝜏))
wrd2ind.5 (𝑤 = 𝐵 → (𝜑𝜌))
wrd2ind.6 𝜓
wrd2ind.7 (((𝑦 ∈ Word 𝑋𝑧𝑋) ∧ (𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒𝜃))
Assertion
Ref Expression
wrd2ind ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏)
Distinct variable groups:   𝑥,𝑤,𝐴   𝑦,𝑤,𝑧,𝐵,𝑥   𝑢,𝑠,𝑤,𝑥,𝑦,𝑧,𝑋   𝑌,𝑠,𝑢,𝑤,𝑥,𝑦,𝑧   𝜒,𝑤,𝑥   𝜑,𝑠,𝑢,𝑦,𝑧   𝜏,𝑥   𝜃,𝑤,𝑥   𝜌,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑢,𝑠)   𝜒(𝑦,𝑧,𝑢,𝑠)   𝜃(𝑦,𝑧,𝑢,𝑠)   𝜏(𝑦,𝑧,𝑤,𝑢,𝑠)   𝜌(𝑥,𝑦,𝑧,𝑢,𝑠)   𝐴(𝑦,𝑧,𝑢,𝑠)   𝐵(𝑢,𝑠)

Proof of Theorem wrd2ind
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 11015 . . . . 5 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
2 eqeq2 2216 . . . . . . . . 9 (𝑛 = 0 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0))
32anbi2d 464 . . . . . . . 8 (𝑛 = 0 → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0)))
43imbi1d 231 . . . . . . 7 (𝑛 = 0 → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑)))
542ralbidv 2531 . . . . . 6 (𝑛 = 0 → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑)))
6 eqeq2 2216 . . . . . . . . 9 (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚))
76anbi2d 464 . . . . . . . 8 (𝑛 = 𝑚 → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚)))
87imbi1d 231 . . . . . . 7 (𝑛 = 𝑚 → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑)))
982ralbidv 2531 . . . . . 6 (𝑛 = 𝑚 → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑)))
10 eqeq2 2216 . . . . . . . . 9 (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1)))
1110anbi2d 464 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1))))
1211imbi1d 231 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑)))
13122ralbidv 2531 . . . . . 6 (𝑛 = (𝑚 + 1) → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑)))
14 eqeq2 2216 . . . . . . . . 9 (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴)))
1514anbi2d 464 . . . . . . . 8 (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) ↔ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴))))
1615imbi1d 231 . . . . . . 7 (𝑛 = (♯‘𝐴) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑)))
17162ralbidv 2531 . . . . . 6 (𝑛 = (♯‘𝐴) → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑛) → 𝜑) ↔ ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑)))
18 eqeq1 2213 . . . . . . . . . . 11 ((♯‘𝑥) = 0 → ((♯‘𝑥) = (♯‘𝑤) ↔ 0 = (♯‘𝑤)))
1918adantl 277 . . . . . . . . . 10 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ (♯‘𝑥) = 0) → ((♯‘𝑥) = (♯‘𝑤) ↔ 0 = (♯‘𝑤)))
20 eqcom 2208 . . . . . . . . . . . . . 14 (0 = (♯‘𝑤) ↔ (♯‘𝑤) = 0)
21 wrdfin 11030 . . . . . . . . . . . . . . 15 (𝑤 ∈ Word 𝑌𝑤 ∈ Fin)
22 fihasheq0 10955 . . . . . . . . . . . . . . 15 (𝑤 ∈ Fin → ((♯‘𝑤) = 0 ↔ 𝑤 = ∅))
2321, 22syl 14 . . . . . . . . . . . . . 14 (𝑤 ∈ Word 𝑌 → ((♯‘𝑤) = 0 ↔ 𝑤 = ∅))
2420, 23bitrid 192 . . . . . . . . . . . . 13 (𝑤 ∈ Word 𝑌 → (0 = (♯‘𝑤) ↔ 𝑤 = ∅))
25 wrdfin 11030 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝑋𝑥 ∈ Fin)
26 fihasheq0 10955 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
2725, 26syl 14 . . . . . . . . . . . . . . 15 (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
28 wrd2ind.6 . . . . . . . . . . . . . . . . 17 𝜓
29 wrd2ind.1 . . . . . . . . . . . . . . . . 17 ((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑𝜓))
3028, 29mpbiri 168 . . . . . . . . . . . . . . . 16 ((𝑥 = ∅ ∧ 𝑤 = ∅) → 𝜑)
3130ex 115 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝑤 = ∅ → 𝜑))
3227, 31biimtrdi 163 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) = 0 → (𝑤 = ∅ → 𝜑)))
3332com13 80 . . . . . . . . . . . . 13 (𝑤 = ∅ → ((♯‘𝑥) = 0 → (𝑥 ∈ Word 𝑋𝜑)))
3424, 33biimtrdi 163 . . . . . . . . . . . 12 (𝑤 ∈ Word 𝑌 → (0 = (♯‘𝑤) → ((♯‘𝑥) = 0 → (𝑥 ∈ Word 𝑋𝜑))))
3534com24 87 . . . . . . . . . . 11 (𝑤 ∈ Word 𝑌 → (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) = 0 → (0 = (♯‘𝑤) → 𝜑))))
3635imp31 256 . . . . . . . . . 10 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ (♯‘𝑥) = 0) → (0 = (♯‘𝑤) → 𝜑))
3719, 36sylbid 150 . . . . . . . . 9 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ (♯‘𝑥) = 0) → ((♯‘𝑥) = (♯‘𝑤) → 𝜑))
3837ex 115 . . . . . . . 8 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → ((♯‘𝑥) = 0 → ((♯‘𝑥) = (♯‘𝑤) → 𝜑)))
3938impcomd 255 . . . . . . 7 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑))
4039rgen2 2593 . . . . . 6 𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 0) → 𝜑)
41 fveq2 5588 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
42 fveq2 5588 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → (♯‘𝑤) = (♯‘𝑢))
4341, 42eqeqan12d 2222 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑤 = 𝑢) → ((♯‘𝑥) = (♯‘𝑤) ↔ (♯‘𝑦) = (♯‘𝑢)))
44 fveqeq2 5597 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚))
4544adantr 276 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑤 = 𝑢) → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚))
4643, 45anbi12d 473 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑤 = 𝑢) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) ↔ ((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚)))
47 wrd2ind.2 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑤 = 𝑢) → (𝜑𝜒))
4846, 47imbi12d 234 . . . . . . . . . 10 ((𝑥 = 𝑦𝑤 = 𝑢) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ (((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)))
4948ancoms 268 . . . . . . . . 9 ((𝑤 = 𝑢𝑥 = 𝑦) → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ (((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)))
5049cbvraldva 2748 . . . . . . . 8 (𝑤 = 𝑢 → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ ∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)))
5150cbvralvw 2743 . . . . . . 7 (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) ↔ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒))
52 lencl 11015 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ Word 𝑌 → (♯‘𝑤) ∈ ℕ0)
5352nn0zd 9508 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ Word 𝑌 → (♯‘𝑤) ∈ ℤ)
54 1zzd 9414 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ Word 𝑌 → 1 ∈ ℤ)
5553, 54zsubcld 9515 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ Word 𝑌 → ((♯‘𝑤) − 1) ∈ ℤ)
56 pfxclz 11150 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Word 𝑌 ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌)
5755, 56mpdan 421 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ Word 𝑌 → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌)
5857adantr 276 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌)
5958ad2antrl 490 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌)
60 simprll 537 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ∈ Word 𝑌)
61 eqeq1 2213 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑥) = (𝑚 + 1) → ((♯‘𝑥) = (♯‘𝑤) ↔ (𝑚 + 1) = (♯‘𝑤)))
62 nn0p1nn 9349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
63 eleq1 2269 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑤) = (𝑚 + 1) → ((♯‘𝑤) ∈ ℕ ↔ (𝑚 + 1) ∈ ℕ))
6463eqcoms 2209 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 + 1) = (♯‘𝑤) → ((♯‘𝑤) ∈ ℕ ↔ (𝑚 + 1) ∈ ℕ))
6562, 64imbitrrid 156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 + 1) = (♯‘𝑤) → (𝑚 ∈ ℕ0 → (♯‘𝑤) ∈ ℕ))
6661, 65biimtrdi 163 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑥) = (𝑚 + 1) → ((♯‘𝑥) = (♯‘𝑤) → (𝑚 ∈ ℕ0 → (♯‘𝑤) ∈ ℕ)))
6766impcom 125 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → (𝑚 ∈ ℕ0 → (♯‘𝑤) ∈ ℕ))
6867adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 ∈ ℕ0 → (♯‘𝑤) ∈ ℕ))
6968impcom 125 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑤) ∈ ℕ)
7069nnge1d 9094 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 1 ≤ (♯‘𝑤))
71 wrdlenge1n0 11044 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ Word 𝑌 → (𝑤 ≠ ∅ ↔ 1 ≤ (♯‘𝑤)))
7260, 71syl 14 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑤 ≠ ∅ ↔ 1 ≤ (♯‘𝑤)))
7370, 72mpbird 167 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ≠ ∅)
74 lswcl 11061 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑌𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑌)
7560, 73, 74syl2anc 411 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (lastS‘𝑤) ∈ 𝑌)
7659, 75jca 306 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌))
77 lencl 11015 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ Word 𝑋 → (♯‘𝑥) ∈ ℕ0)
7877nn0zd 9508 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word 𝑋 → (♯‘𝑥) ∈ ℤ)
79 1zzd 9414 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word 𝑋 → 1 ∈ ℤ)
8078, 79zsubcld 9515 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word 𝑋 → ((♯‘𝑥) − 1) ∈ ℤ)
81 pfxclz 11150 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word 𝑋 ∧ ((♯‘𝑥) − 1) ∈ ℤ) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋)
8280, 81mpdan 421 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝑋 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋)
8382adantl 277 . . . . . . . . . . . . . . 15 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋)
8483ad2antrl 490 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋)
85 simprlr 538 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ∈ Word 𝑋)
86 eleq1 2269 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (𝑚 + 1) → ((♯‘𝑥) ∈ ℕ ↔ (𝑚 + 1) ∈ ℕ))
8762, 86imbitrrid 156 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) = (𝑚 + 1) → (𝑚 ∈ ℕ0 → (♯‘𝑥) ∈ ℕ))
8887ad2antll 491 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 ∈ ℕ0 → (♯‘𝑥) ∈ ℕ))
8988impcom 125 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) ∈ ℕ)
9089nnge1d 9094 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 1 ≤ (♯‘𝑥))
91 wrdlenge1n0 11044 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word 𝑋 → (𝑥 ≠ ∅ ↔ 1 ≤ (♯‘𝑥)))
9285, 91syl 14 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑥 ≠ ∅ ↔ 1 ≤ (♯‘𝑥)))
9390, 92mpbird 167 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ≠ ∅)
94 lswcl 11061 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Word 𝑋𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝑋)
9585, 93, 94syl2anc 411 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (lastS‘𝑥) ∈ 𝑋)
9676, 84, 95jca32 310 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋 ∧ (lastS‘𝑥) ∈ 𝑋)))
9796adantlr 477 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋 ∧ (lastS‘𝑥) ∈ 𝑋)))
98 simprl 529 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋))
99 simplr 528 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒))
100 simprrl 539 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) = (♯‘𝑤))
101100oveq1d 5971 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) = ((♯‘𝑤) − 1))
102 simprlr 538 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ∈ Word 𝑋)
103 fzossfz 10303 . . . . . . . . . . . . . . . . . 18 (0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥))
104 simprrr 540 . . . . . . . . . . . . . . . . . . . 20 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) = (𝑚 + 1))
10562ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝑚 + 1) ∈ ℕ)
106104, 105eqeltrd 2283 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑥) ∈ ℕ)
107 fzo0end 10369 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) ∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥)))
108106, 107syl 14 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥)))
109103, 108sselid 3195 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥)))
110 pfxlen 11156 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word 𝑋 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = ((♯‘𝑥) − 1))
111102, 109, 110syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = ((♯‘𝑥) − 1))
112 simprll 537 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ∈ Word 𝑌)
113 oveq1 5963 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑤) = (♯‘𝑥) → ((♯‘𝑤) − 1) = ((♯‘𝑥) − 1))
114 oveq2 5964 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑤) = (♯‘𝑥) → (0...(♯‘𝑤)) = (0...(♯‘𝑥)))
115113, 114eleq12d 2277 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (♯‘𝑥) → (((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))))
116115eqcoms 2209 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (♯‘𝑤) → (((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))))
117116adantr 276 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → (((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))))
118117ad2antll 491 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤)) ↔ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))))
119109, 118mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤)))
120 pfxlen 11156 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Word 𝑌 ∧ ((♯‘𝑤) − 1) ∈ (0...(♯‘𝑤))) → (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) = ((♯‘𝑤) − 1))
121112, 119, 120syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) = ((♯‘𝑤) − 1))
122101, 111, 1213eqtr4d 2249 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))))
123104oveq1d 5971 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) − 1))
124 nn0cn 9320 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
125124ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑚 ∈ ℂ)
126 ax-1cn 8033 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
127 pncan 8293 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
128125, 126, 127sylancl 413 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((𝑚 + 1) − 1) = 𝑚)
129111, 123, 1283eqtrd 2243 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)
130122, 129jca 306 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚))
13183adantr 276 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋)
132 fveq2 5588 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (♯‘𝑦) = (♯‘(𝑥 prefix ((♯‘𝑥) − 1))))
133 fveq2 5588 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (♯‘𝑢) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))))
134132, 133eqeqan12d 2222 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))))
135134expcom 116 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))))))
136135adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))))))
137136imp 124 . . . . . . . . . . . . . . . . . 18 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))))
138 fveqeq2 5597 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚))
139138adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚))
140137, 139anbi12d 473 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → (((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)))
141 vex 2776 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
142 vex 2776 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
143141, 142, 47sbc2ie 3074 . . . . . . . . . . . . . . . . . . . 20 ([𝑦 / 𝑥][𝑢 / 𝑤]𝜑𝜒)
144143bicomi 132 . . . . . . . . . . . . . . . . . . 19 (𝜒[𝑦 / 𝑥][𝑢 / 𝑤]𝜑)
145144a1i 9 . . . . . . . . . . . . . . . . . 18 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → (𝜒[𝑦 / 𝑥][𝑢 / 𝑤]𝜑))
146 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)))
147146sbceq1d 3007 . . . . . . . . . . . . . . . . . 18 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ([𝑦 / 𝑥][𝑢 / 𝑤]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑))
148 dfsbcq 3004 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([𝑢 / 𝑤]𝜑[(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
149148sbcbidv 3061 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
150149adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
151150adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][𝑢 / 𝑤]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
152145, 147, 1513bitrd 214 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → (𝜒[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
153140, 152imbi12d 234 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) ∧ 𝑦 = (𝑥 prefix ((♯‘𝑥) − 1))) → ((((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) ↔ (((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)))
154131, 153rspcdv 2884 . . . . . . . . . . . . . . 15 (((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ 𝑢 = (𝑤 prefix ((♯‘𝑤) − 1))) → (∀𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) → (((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)))
15558, 154rspcimdv 2882 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → (∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) → (((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)))
15698, 99, 130, 155syl3c 63 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)
157156, 122jca 306 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))))
158 dfsbcq 3004 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑[(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤][𝑦 / 𝑥]𝜑))
159 sbccom 3078 . . . . . . . . . . . . . . . 16 ([(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤][𝑦 / 𝑥]𝜑[𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑)
160158, 159bitrdi 196 . . . . . . . . . . . . . . 15 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑[𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
161133eqeq2d 2218 . . . . . . . . . . . . . . 15 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ((♯‘𝑦) = (♯‘𝑢) ↔ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))))
162160, 161anbi12d 473 . . . . . . . . . . . . . 14 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ∧ (♯‘𝑦) = (♯‘𝑢)) ↔ ([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))))))
163 oveq1 5963 . . . . . . . . . . . . . . 15 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → (𝑢 ++ ⟨“𝑠”⟩) = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩))
164163sbceq1d 3007 . . . . . . . . . . . . . 14 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ([(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
165162, 164imbi12d 234 . . . . . . . . . . . . 13 (𝑢 = (𝑤 prefix ((♯‘𝑤) − 1)) → ((([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ∧ (♯‘𝑦) = (♯‘𝑢)) → [(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
166 s1eq 11091 . . . . . . . . . . . . . . . . 17 (𝑠 = (lastS‘𝑤) → ⟨“𝑠”⟩ = ⟨“(lastS‘𝑤)”⟩)
167166oveq2d 5972 . . . . . . . . . . . . . . . 16 (𝑠 = (lastS‘𝑤) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩) = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩))
168167sbceq1d 3007 . . . . . . . . . . . . . . 15 (𝑠 = (lastS‘𝑤) → ([((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
169168imbi2d 230 . . . . . . . . . . . . . 14 (𝑠 = (lastS‘𝑤) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
170 sbccom 3078 . . . . . . . . . . . . . . . 16 ([((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑)
171170a1i 9 . . . . . . . . . . . . . . 15 (𝑠 = (lastS‘𝑤) → ([((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
172171imbi2d 230 . . . . . . . . . . . . . 14 (𝑠 = (lastS‘𝑤) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [(𝑦 ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑)))
173169, 172bitrd 188 . . . . . . . . . . . . 13 (𝑠 = (lastS‘𝑤) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [(𝑦 ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑)))
174 dfsbcq 3004 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑))
175 fveqeq2 5597 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))) ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))))
176174, 175anbi12d 473 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1))))))
177 oveq1 5963 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ ⟨“𝑧”⟩) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩))
178177sbceq1d 3007 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
179176, 178imbi12d 234 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((([𝑦 / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘𝑦) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [(𝑦 ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑) ↔ (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑)))
180 s1eq 11091 . . . . . . . . . . . . . . . 16 (𝑧 = (lastS‘𝑥) → ⟨“𝑧”⟩ = ⟨“(lastS‘𝑥)”⟩)
181180oveq2d 5972 . . . . . . . . . . . . . . 15 (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
182181sbceq1d 3007 . . . . . . . . . . . . . 14 (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
183182imbi2d 230 . . . . . . . . . . . . 13 (𝑧 = (lastS‘𝑥) → ((([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑) ↔ (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑)))
184 simplr 528 . . . . . . . . . . . . . . . . 17 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝑦 ∈ Word 𝑋𝑧𝑋))
185 simpll 527 . . . . . . . . . . . . . . . . 17 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝑢 ∈ Word 𝑌𝑠𝑌))
186 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (♯‘𝑦) = (♯‘𝑢))
187 wrd2ind.7 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ Word 𝑋𝑧𝑋) ∧ (𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒𝜃))
188184, 185, 186, 187syl3anc 1250 . . . . . . . . . . . . . . . 16 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒𝜃))
18947ancoms 268 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 𝑢𝑥 = 𝑦) → (𝜑𝜒))
190142, 141, 189sbc2ie 3074 . . . . . . . . . . . . . . . . 17 ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑𝜒)
191190a1i 9 . . . . . . . . . . . . . . . 16 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑𝜒))
192 ccatws1cl 11104 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ Word 𝑌𝑠𝑌) → (𝑢 ++ ⟨“𝑠”⟩) ∈ Word 𝑌)
193192ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝑢 ++ ⟨“𝑠”⟩) ∈ Word 𝑌)
194 ccatws1cl 11104 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ Word 𝑋𝑧𝑋) → (𝑦 ++ ⟨“𝑧”⟩) ∈ Word 𝑋)
195184, 194syl 14 . . . . . . . . . . . . . . . . 17 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝑦 ++ ⟨“𝑧”⟩) ∈ Word 𝑋)
196 nfv 1552 . . . . . . . . . . . . . . . . . 18 𝑤𝜃
197 nfv 1552 . . . . . . . . . . . . . . . . . 18 𝑥𝜃
198 nfv 1552 . . . . . . . . . . . . . . . . . 18 𝑤(𝑦 ++ ⟨“𝑧”⟩) ∈ Word 𝑋
199 wrd2ind.3 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑦 ++ ⟨“𝑧”⟩) ∧ 𝑤 = (𝑢 ++ ⟨“𝑠”⟩)) → (𝜑𝜃))
200199ancoms 268 . . . . . . . . . . . . . . . . . 18 ((𝑤 = (𝑢 ++ ⟨“𝑠”⟩) ∧ 𝑥 = (𝑦 ++ ⟨“𝑧”⟩)) → (𝜑𝜃))
201196, 197, 198, 200sbc2iegf 3073 . . . . . . . . . . . . . . . . 17 (((𝑢 ++ ⟨“𝑠”⟩) ∈ Word 𝑌 ∧ (𝑦 ++ ⟨“𝑧”⟩) ∈ Word 𝑋) → ([(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑𝜃))
202193, 195, 201syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → ([(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑𝜃))
203188, 191, 2023imtr4d 203 . . . . . . . . . . . . . . 15 ((((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) ∧ (♯‘𝑦) = (♯‘𝑢)) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑[(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
204203ex 115 . . . . . . . . . . . . . 14 (((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) → ((♯‘𝑦) = (♯‘𝑢) → ([𝑢 / 𝑤][𝑦 / 𝑥]𝜑[(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
205204impcomd 255 . . . . . . . . . . . . 13 (((𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (𝑦 ∈ Word 𝑋𝑧𝑋)) → (([𝑢 / 𝑤][𝑦 / 𝑥]𝜑 ∧ (♯‘𝑦) = (♯‘𝑢)) → [(𝑢 ++ ⟨“𝑠”⟩) / 𝑤][(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
206165, 173, 179, 183, 205vtocl4ga 2847 . . . . . . . . . . . 12 ((((𝑤 prefix ((♯‘𝑤) − 1)) ∈ Word 𝑌 ∧ (lastS‘𝑤) ∈ 𝑌) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝑋 ∧ (lastS‘𝑥) ∈ 𝑋)) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥][(𝑤 prefix ((♯‘𝑤) − 1)) / 𝑤]𝜑 ∧ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = (♯‘(𝑤 prefix ((♯‘𝑤) − 1)))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
20797, 157, 206sylc 62 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑)
208 eqtr2 2225 . . . . . . . . . . . . . . . 16 (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → (♯‘𝑤) = (𝑚 + 1))
209208ad2antll 491 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑤) = (𝑚 + 1))
210209, 105eqeltrd 2283 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (♯‘𝑤) ∈ ℕ)
21121adantr 276 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → 𝑤 ∈ Fin)
212211ad2antrl 490 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ∈ Fin)
213 hashnncl 10957 . . . . . . . . . . . . . . 15 (𝑤 ∈ Fin → ((♯‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅))
214212, 213syl 14 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅))
215210, 214mpbid 147 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 ≠ ∅)
216 pfxlswccat 11184 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word 𝑌𝑤 ≠ ∅) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
217216eqcomd 2212 . . . . . . . . . . . . 13 ((𝑤 ∈ Word 𝑌𝑤 ≠ ∅) → 𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩))
218112, 215, 217syl2anc 411 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩))
21925adantl 277 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) → 𝑥 ∈ Fin)
220219ad2antrl 490 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ∈ Fin)
221 hashnncl 10957 . . . . . . . . . . . . . . 15 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
222220, 221syl 14 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
223106, 222mpbid 147 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 ≠ ∅)
224 pfxlswccat 11184 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word 𝑋𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) = 𝑥)
225224eqcomd 2212 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑋𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
226102, 223, 225syl2anc 411 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
227 sbceq1a 3012 . . . . . . . . . . . . 13 (𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) → (𝜑[((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
228 sbceq1a 3012 . . . . . . . . . . . . 13 (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) → ([((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
229227, 228sylan9bb 462 . . . . . . . . . . . 12 ((𝑤 = ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) ∧ 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩)) → (𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
230218, 226, 229syl2anc 411 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → (𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥][((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) / 𝑤]𝜑))
231207, 230mpbird 167 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ ((𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋) ∧ ((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)))) → 𝜑)
232231expr 375 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) ∧ (𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋)) → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑))
233232ralrimivva 2589 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ ∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒)) → ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑))
234233ex 115 . . . . . . 7 (𝑚 ∈ ℕ0 → (∀𝑢 ∈ Word 𝑌𝑦 ∈ Word 𝑋(((♯‘𝑦) = (♯‘𝑢) ∧ (♯‘𝑦) = 𝑚) → 𝜒) → ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑)))
23551, 234biimtrid 152 . . . . . 6 (𝑚 ∈ ℕ0 → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = 𝑚) → 𝜑) → ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (𝑚 + 1)) → 𝜑)))
2365, 9, 13, 17, 40, 235nn0ind 9502 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑))
2371, 236syl 14 . . . 4 (𝐴 ∈ Word 𝑋 → ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑))
2382373ad2ant1 1021 . . 3 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → ∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑))
239 fveq2 5588 . . . . . . . . 9 (𝑤 = 𝐵 → (♯‘𝑤) = (♯‘𝐵))
240239eqeq2d 2218 . . . . . . . 8 (𝑤 = 𝐵 → ((♯‘𝑥) = (♯‘𝑤) ↔ (♯‘𝑥) = (♯‘𝐵)))
241240anbi1d 465 . . . . . . 7 (𝑤 = 𝐵 → (((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) ↔ ((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴))))
242 wrd2ind.5 . . . . . . 7 (𝑤 = 𝐵 → (𝜑𝜌))
243241, 242imbi12d 234 . . . . . 6 (𝑤 = 𝐵 → ((((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) ↔ (((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌)))
244243ralbidv 2507 . . . . 5 (𝑤 = 𝐵 → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) ↔ ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌)))
245244rspcv 2877 . . . 4 (𝐵 ∈ Word 𝑌 → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) → ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌)))
2462453ad2ant2 1022 . . 3 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → (∀𝑤 ∈ Word 𝑌𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝑤) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜑) → ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌)))
247238, 246mpd 13 . 2 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → ∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌))
248 eqidd 2207 . 2 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → (♯‘𝐴) = (♯‘𝐴))
249 fveqeq2 5597 . . . . . . . . . 10 (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐵) ↔ (♯‘𝐴) = (♯‘𝐵)))
250 fveqeq2 5597 . . . . . . . . . 10 (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴)))
251249, 250anbi12d 473 . . . . . . . . 9 (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) ↔ ((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴))))
252 wrd2ind.4 . . . . . . . . 9 (𝑥 = 𝐴 → (𝜌𝜏))
253251, 252imbi12d 234 . . . . . . . 8 (𝑥 = 𝐴 → ((((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) ↔ (((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)) → 𝜏)))
254253rspcv 2877 . . . . . . 7 (𝐴 ∈ Word 𝑋 → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → (((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)) → 𝜏)))
255254com23 78 . . . . . 6 (𝐴 ∈ Word 𝑋 → (((♯‘𝐴) = (♯‘𝐵) ∧ (♯‘𝐴) = (♯‘𝐴)) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → 𝜏)))
256255expd 258 . . . . 5 (𝐴 ∈ Word 𝑋 → ((♯‘𝐴) = (♯‘𝐵) → ((♯‘𝐴) = (♯‘𝐴) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → 𝜏))))
257256com34 83 . . . 4 (𝐴 ∈ Word 𝑋 → ((♯‘𝐴) = (♯‘𝐵) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏))))
258257imp 124 . . 3 ((𝐴 ∈ Word 𝑋 ∧ (♯‘𝐴) = (♯‘𝐵)) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))
2592583adant2 1019 . 2 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → (∀𝑥 ∈ Word 𝑋(((♯‘𝑥) = (♯‘𝐵) ∧ (♯‘𝑥) = (♯‘𝐴)) → 𝜌) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))
260247, 248, 259mp2d 47 1 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wne 2377  wral 2485  [wsbc 3002  c0 3464   class class class wbr 4050  cfv 5279  (class class class)co 5956  Fincfn 6839  cc 7938  0cc0 7940  1c1 7941   + caddc 7943  cle 8123  cmin 8258  cn 9051  0cn0 9310  cz 9387  ...cfz 10145  ..^cfzo 10279  chash 10937  Word cword 11011  lastSclsw 11055   ++ cconcat 11064  ⟨“cs1 11087   prefix cpfx 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-dom 6841  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-ihash 10938  df-word 11012  df-lsw 11056  df-concat 11065  df-s1 11088  df-substr 11117  df-pfx 11144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator